
Available

CAV
Evaluation

Artifact

Functional

CAV
Evaluation

Artifact

Proactive Real-Time First-Order Enforcement

François Hublet1, Leonardo Lima2, David Basin1,
Srđan Krstić1, and Dmitriy Traytel2

1 ETH Zürich, Zurich, Switzerland
{francois.hublet, basin, srdan.krstic}@inf.ethz.ch

2 University of Copenhagen, Denmark
{leonardo, traytel}@di.ku.dk

Abstract. Modern software systems must comply with increasingly com-
plex regulations in domains ranging from industrial automation to data
protection. Runtime enforcement addresses this challenge by empowering
systems to not only observe, but also actively control, the behavior of
target systems by modifying their actions to ensure policy compliance.
We propose a novel approach to the proactive real-time enforcement of
policies expressed in metric first-order temporal logic (MFOTL). We in-
troduce a new system model, define an expressive MFOTL fragment that
is enforceable in that model, and develop a sound enforcement algorithm
for this fragment. We implement this algorithm in a tool called WhyEnf
and carry out a case study on enforcing GDPR-related policies. Our tool
can enforce all policies from the study in real-time with modest overhead.
Our work thus provides the first tool-supported approach that can proac-
tively enforce expressive first-order policies in real time.

Keywords: runtime enforcement · temporal logic · obligations

1 Introduction

As modern software systems become increasingly complex, they are required to
comply with a myriad of growingly intricate regulations. The ability to monitor
and control such systems is an important, technically challenging task.

Runtime enforcement [58] tackles this problem by observing and controlling a
target system under scrutiny (SuS), so that its actions, possibly modified, comply
with a given policy. Runtime enforcement is performed by a component called
enforcer, which observes the SuS and influences its behavior as permitted by the
system model, e.g., by suppressing or causing SuS actions. Enforcement is thus
an inherently online problem performed during the SuS’s execution. When time
constraints are involved, enforcement is called real-time. This is a more difficult
problem than runtime monitoring [8], where the SuS is only observed and policy
violations are reported, but not prevented. Applications of runtime enforcement
are manifold, ranging from safety protocols in industrial automation to regulatory
compliance and it is closely related to the problem of controller synthesis [1, 56].

Policies can be decomposed into provisions and obligations [37]. Compliance
with provisions depends on past and present SuS behavior, and it is sufficient
for an enforcer to react to the current SuS action. Compliance with obligations,

https://doi.org/10.5281/zenodo.10947830

2 F. Hublet et al.

on the other hand, depends on future SuS behavior, requiring the enforcer to
account for this behavior and proactively act [11] to prevent violations.

In existing approaches to proactive runtime enforcement [11], policies are
typically propositional: they regard every system action as either true or false.
In practice, however, actions are often parameterized with data values coming
from an infinite domain, like strings or integers, and first-order policies are used
to formulate dependencies between such actions’ parameters. To the best of our
knowledge, no previous work supports proactive enforcement of first-order policies:
Hublet et al.’s [39] enforcement is real-time, but not proactive; Aceto et al. [5]
similarly support only the reactive runtime enforcement of first-order provisions.

In this paper, we propose an approach for proactively enforcing metric first-
order temporal logic (MFOTL) [18] policies. Our approach features a realistic sys-
tem model that supports proactive real-time enforcement in the nick of time [11,
12], i.e., the enforcer can act at least once per clock tick. Our model includes caus-
able, suppressable, and only-observable SuS actions. Due to its proactivity, our
enforcer supports an expressive MFOTL fragment with past and future operators.

Our enforcer is sound (modified SuS behavior complies with a given policy) for
an enforceable MFOTL fragment (EMFOTL), and transparent (if SuS behavior is
already policy-compliant, then it is not modified) for a fragment of EMFOTL. Our
enforcer relies on the runtime monitoring tool WhyMon [49] as a backend. After
reviewing MFOTL and WhyMon (Section 2) we describe our approach and eval-
uate the associated implementation. Our work makes the following contributions:
– We introduce a new system model for the proactive real-time enforcement of

metric first-order policies (Section 3).
– We present an enforceable MFOTL fragment (called EMFOTL) with past

and future operators that we characterize using a type system (Section 4).
– We develop an enforcement algorithm for EMFOTL and prove its soundness.

We also prove its transparency for a fragment of EMFOTL (Section 5).
– We implement the type system and the algorithm into a new tool, called

WhyEnf. We carry out a case study on monitoring core GDPR provisions [7],
using WhyEnf to enforce the monitored policies. We find that WhyEnf
can seamlessly enforce all monitorable policies from this case study in real
time with modest runtime overhead (Section 6).
To our knowledge, WhyEnf (available at [43]) is the first proactive first-order

policy enforcer (Section 7). All proofs can be found in our extended report [42].

2 Preliminaries

We introduce traces that model system executions, metric-first order temporal
logic (MFOTL), and WhyMon, a monitor for an expressive MFOTL fragment.

Let x, y, z ∈ V be variables and c, d ∈ D be values from an infinite domain D
of constant symbols, like integers or strings. Terms t ∈ V ∪D are either variables
or constants. Finite sequences of terms t1, . . . , tn are written as t. Let E denote a
finite set of event names, and the function ι : E → N map event names to arities.
An event is a pair (e, (d1, . . . , dι(e))) ∈ E × Dι(e) of an event name e and ι(e)

Proactive Real-Time First-Order Enforcement 3

arguments. We fix a signature Σ = (D,E, ι) and define the set DB of databases
over Σ as P({(e, d) | e ∈ E, d ∈ Dι(e)}). The subset of all databases with event
names in E ⊆ E is DB(E) := {D ∈ DB | ∀(e, (d1, . . . , dι(e))) ∈ D. e ∈ E}.

Example 1. Consider a system logging GDPR-relevant events defined with the
signature Σ0 = (N,E0, ι0), where E0 = {use, consent, delete, deletion_request,
legal_ground}, ι0(use) = ι0(delete) = ι0(deletion_request) = 3, and ι0(consent) =
ι0(legal_ground) = 2. The events’ denotations are: use(c, d, u) means ‘system uses
user u’s data d from category c’, delete(c, d, u) means ‘user u’s data d from category
c is deleted’, deletion_request(c, d, u) means ‘user u requests deletion of data d
from category c’, consent(u, c) means ‘user u provides consent for category c’, and
legal_ground(u, d) means ‘legal ground was claimed to process user u’s data d’.

A trace σ is a sequence ⟨(τi, Di)⟩0≤i≤k , k ∈ N ∪ {∞} of timestamps τi ∈ N and
finite databases Di ∈ DB, where timestamps grow monotonically (∀i < |σ|. τi ≤
τi+1) and progress (if |σ| = ∞, then ∀τ. ∃i. τ < τi). An index 0 ≤ i < |σ|, in a
trace σ is called a time-point. The empty trace is denoted by ε, the set of all traces
by T, and the set of finite (resp. infinite) traces by Tf (resp. Tω). For traces σ ∈ Tf

and σ′ ∈ T, σ · σ′ denotes their concatenation. A property is a subset P ⊆ Tω.

Example 2. Consider two infinite traces of a data management system

σ1=(10, {consent(1, 1), consent(1, 2)), (50, {use(1, 3, 1), use(2, 1, 1)}), . . .
σ2=(10, {deletion_request(2, 1, 1)}), (50, {use(1, 3, 1)}), . . .

In σ1, user 1 provides consent for categories 1 and 2 at time-point 0 with timestamp
10; at time-point 1 with timestamp 50, the system uses user 1’s data 3 (with
category 1) and user 1’s data 1 (with category 2). In σ2, user 1 requests deletion
of data 1 with category 2, and then the system uses data 3 with category 1.

MFOTL formulae are defined by the following grammar

φ ::= ⊤ | e(t) | ¬φ | φ ∧ φ | ∃x. φ | #I φ | I φ | φ UI φ | φ SI φ,

where e ∈ E, x ∈ V, and I ∈ I ranges over non-empty intervals in N. We use the
standard abbreviations ⊥ := ¬⊤, φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ→ ψ := ¬φ ∨ ψ, φ↔
ψ := (φ→ ψ)∧(ψ → φ), ∀x. φ := ¬(∃x. ¬φ), ♢I φ := ⊤UIφ (eventually), ♦I φ :=
⊤ SI φ (once), □I φ := ¬♢I ¬φ (always), and ■I φ := ¬♦I ¬φ (historically). A
polarity p ∈ {+,−} acts upon a formula φ by +φ := φ and −φ := ¬φ. We omit in-
tervals of the form [0,∞) from the temporal operators’ subscript. We write φ[d/x]
for the formula resulting from substituting the free variable x with the constant d
in the formula φ. The notation φ[v] generalizes such a unary substitution to apply-
ing a full valuation v : V → D, i.e., a mapping from variables to domain values.

Example 3. Suppose that the time unit is days. Consider the formulae

φlaw ≡ □ (∀c, d, u. use (c, d, u) → ♦ (consent (u, c) ∨ legal_grounds (u, d)))

φdel ≡ □
(
∀c, d, u. deletion_request (c, d, u) → ♢[0,30] delete (c, d, u)

)

4 F. Hublet et al.

v, i ⊨ e(t) iff (e, J t Kv) ∈ Di v, i ⊨ ⊤
v, i ⊨ ∃x. φ iff v[x 7→ d], i ⊨ φ for some d ∈ D v, i ⊨ ¬φ iff v, i ̸⊨ φ
v, i ⊨ #I φ iff v, i+ 1 ⊨ φ and τi+1 − τi ∈ I v, i ⊨ φ ∧ ψ iff v, i ⊨ φ and v, i ⊨ ψ
v, i ⊨ I φ iff i > 0 and v, i− 1 ⊨ φ and τi − τi−1 ∈ I
v, i ⊨ φ UI ψ iff v, j ⊨ ψ for some j ≥ i with τj − τi ∈ I and v, k ⊨ φ for all i ≤ k < j
v, i ⊨ φ SI ψ iff v, j ⊨ ψ for some j ≤ i with τi − τj ∈ I and v, k ⊨ φ for all j < k ≤ i

Fig. 1. MFOTL semantics for a fixed, infinite trace σ

The formula φlaw formalizes lawfulness of processing : ‘whenever data d with cat-
egory c belonging to user u is processed, then either u has consented to her data
with category c being used, or the controller has claimed a legal ground to process
d.’ The formula φdel formalizes the GDPR’s right to erasure: ‘whenever a user u re-
quests the deletion of data d of category c, then d must be deleted within 30 days’.

We write fv(φ) and cs(φ) for the set of free variables and constants of a formula
φ, respectively. We define the active domain ADi(φ) of a formula φ at time-
point i as cs(φ) ∪

(⋃
j≤i{d | d is one of dk in e(d1, . . . , dι(e)) ∈ Dj}

)
. The active

domain of φ at i contains all constants occurring in φ together with all constants
occurring as event arguments in the trace up to time-point i.
Example 4. As cs(φlaw) = cs(φdel) = ∅, we have AD0(φlaw) = AD0(φdel) = {1, 2}
and AD1(φlaw)=AD1(φdel)={1, 2, 3} for σ1.

MFOTL’s semantics (Figure 1) is defined over infinite traces. Given a valu-
ation v, we define the interpretation of terms as Jx Kv = v(x) (for variables) and
J c Kv = c (for constants). We lift this operation straightforwardly to lists of terms.
A valuation update is denoted as v[d/x]. Each sequent v, i ⊨σ φ denotes that φ is
satisfied at time-point i of trace σ under valuation v. We omit σ whenever it is clear
from the context. The language of a formula φ is L(φ) = {σ ∈ Tω | ∃v. v, 0 ⊨σ φ}.

Lima et al. [49] present an algorithm and a tool, called WhyMon, that can
monitor an expressive safety fragment of MFOTL both online and offline. This
fragment contains all formulae with future-bounded until operators. Thus, it
strictly extends the fragments supported by other tools like MonPoly [13] and
VeriMon [9], which only support formulas in relational algebra normal form [20],
and DejaVu [35], which is restricted to past temporal operators.

Abstractly, WhyMon implements a function Sat(v, φ, i) = v, i ⊨ φ that
checks if a valuation satisfies the formula φ on a (fixed) trace σ at time-point i.
Internally, it manipulates objects representing proofs of φ’s subformulae. This
technique additionally allows WhyMon to output explanations [48] of its verdicts
(satisfactions or violations) in the form of proofs that can be checked using a
proof checker. We refer to Lima et al.’s work [49] for further details.

3 Proactive, Real-Time, First-Order Enforcement

Our system model (Section 3.1) is inspired by Basin et al.’s model for proactive
propositional enforcement [11,12] and Hublet et al.’s model for (non-proactive)
first-order enforcement [39]. Within this model, we define enforcers (Section 3.2).

Proactive Real-Time First-Order Enforcement 5

X S E

1.1: set of events D

1.2: R-command RCom(DC, DS)

2: P-command PCom(DC)

policyP

time τ

Fig. 2. System model for proactive real-time first-order enforcement

3.1 System model

Figure 2 shows a system S supervised by an enforcer E described using a com-
munication diagram [32]. The system S interacts with an environment X that
E cannot control. The enforcer E must ensure that the sequence of actions ex-
ecuted by S complies with a given policy P . To this end, S reports to E sets
of events (from E) that capture the system’s observable actions. The enforcer
E can send commands to S, whereby it instructs S to cause or suppress the ac-
tions corresponding to specific events. There are two kinds of such commands, R-
commands and P-commands, which will be described below. We assume that the
set of events is partitioned into a set of causable events C capturing actions that
E can instruct S to cause, a set of suppressable events S capturing actions that
E can instruct S to suppress, and a set of only-observable events O = E \ (S∪C)
capturing actions that can be neither caused nor suppressed.

Example 5. Suppose that the system from Example 1 can be instrumented so
that an enforcer can (observe and) prevent data usage and cause data deletion,
but can only observe the remaining actions. The corresponding event sets are
then C={delete}, S={use}, and O={consent, legal_ground, deletion_request}.

More specifically, we assume that E interacts with S in three modes: (1) Before
performing any suppressable actions, S sends the corresponding set of (suppress-
able) events D ∈ DB to E. The enforcer inspects D and reactively responds with
an R-command RCom(DC, DS), where DC ∈ DB(C) is a set of causable events and
D ⊇ DS ∈ DB(S) is a set of suppressable events. S then performs the actions cor-
responding to the events in (D \DS)∪DC, i.e., all actions corresponding to events
in DC (resp. DS) are caused (resp. suppressed). (2) After performing actions that
are not suppressable, S sends the corresponding set of events D ∈ DB to E. The
enforcer inspects D and responds with an R-command RCom(DC, ∅). As no sup-
pressable actions are to be performed and the events are sent after the actions, the
enforcer can only instruct S to cause actions, but not to suppress them. (3) Before
any clock tick (‘in the nick of time’ [12]), E can proactively send a P-command
PCom(DC) with DC ∈ DB(C) to S. The system S then performs the actions cor-
responding to the events in DC. Note that sending a P-command before a tick is
always possible, but the enforcer may instead choose not to send any command.

These modes of interaction cover different enforcement scenarios. In mode
(1), E reacts to suppressable events by possibly suppressing or causing events.
E.g., the formula φlaw from Example 3 can be enforced by suppressing data us-
age (the use events) if no appropriate event has previously occurred. In mode
(2), E reacts to only-observable events (e.g., the consent events) by possibly caus-
ing events corresponding to corrective actions after the executed action. Finally,

6 F. Hublet et al.

mode (3) enforces policies by causing events at times when the SuS does not, on
its own, send any observable events. This is the case, e.g., when enforcing φdel

on σ2: data 1 with category 2 must be deleted between timestamps 10 and 40.

Discussion. Assume that the enforcer E can ensure that the sequence of actions
it observes complies with P . When does this guarantee that the system actually
complies with P? Basin et al. [12] state two conditions for achieving soundness:
(a) the system and enforcer must be synchronized and (b) the enforcer must be
fast enough to keep up with the real-time system behavior. These conditions also
apply in our model. Condition (a) ensures that the order of events observed by
E reflect the order of S’s actions. Condition (b) ensures that the timestamps
of events reflect the time at which the corresponding actions are performed by
S. The interval t between two clock ticks must satisfy the real-time condition
t > δS + 2δS↔E + δE , where δS is the worst-case time needed by S to create
events before performing observable actions and process the enforcer’s reactions,
δS↔E is the worst-case communication time between S and E, and δE is the
worst-case latency of the enforcer. Threats to the model’s validity may thus stem
from high communication time, or poor SuS or enforcer performance.

3.2 Enforcers

An enforcer reads the consecutive prefixes of an SuS’s trace and returns commands:

Definition 1. A command is any element of the form RCom(DC, DS) (‘R-
command’), PCom(DC) (‘P-command’), or NoCom (‘no command’), where DC ∈
DB(C) and DS ∈ DB(S). The set of commands is denoted by C.

Definition 2. An enforcer E is a triple (S, s0, µ), where S is a set of states,
s0 ∈ S is an initial state, and µ : Tf × S × (N ∪ {⊥}) → C × S is a computable
update function such that the following two conditions hold:

∀σ, τ,D, s. ∃DC, DS, s
′. µ(σ · (τ,D), s,⊥) = (RCom(DC, DS), s

′) ∧DS ⊆ D

∀σ, s, τ ∈ N. ∃DC, s
′. µ(σ, s, τ) ∈ {(PCom(DC), s

′), (NoCom, s′)}.

If µ’s third argument is ⊥, then µ returns an R-command. The set of events to
be suppressed contained in this command is a subset of the last set of events
reported by the SuS. On the other hand, if µ’s third argument is an integer
timestamp, then µ returns either a P-command for the corresponding timestamp,
or no command. Any enforcer induces the following trace transduction:

Definition 3. For any σ ∈ T and enforcer E = (S, s0, µ), the enforced trace E(σ)
is defined co-recursively in Algorithm 1, where fts(σ) is the first timestamp in σ.

Algorithm 1 formalizes the interaction described in Section 3.1: the enforcer
is called once at every time-point in the input trace σ to generate an R-command
(lines 6–7), and once before each clock tick to (possibly) generate a P-command
(lines 3–5). The generated commands are executed sequentially to produce the
enforced trace E(σ), which thus reflects the actions performed by the SuS when
composed with the enforcer as in Section 3.1.

Proactive Real-Time First-Order Enforcement 7

1: run(s, σ, σ′, τ) = case σ′ of
2: | ε⇒ ε
3: | (τ ′, D) · σ′′ when τ ′ > τ ⇒ let (o, s′) = µ(σ, s, τ) in
4: case o of | PCom(DC)⇒ (τ,DC) · run(s′, σ · (τ,DC), σ

′, τ + 1)
5: | NoCom⇒ run(s′, σ, σ′, τ + 1)
6: | (τ ′, D) ·σ′′ when τ ′ = τ ⇒ let (o, s′) = µ(σ ·(τ ′, D), s,⊥);D′ = (D\DS)∪DC) in
7: case o of | RCom(DC , DS)⇒ (τ ′, D′) · run(s′, σ · (τ ′, D′), σ′′, τ + 1)
8: E(σ) = run(s0, ε, σ, if σ = ε then 0 else fts(σ))

Algorithm 1: Enforced trace

To be considered correct with respect to a given property P , enforcers are typ-
ically required to fulfill two properties: soundness and transparency [47]. Sound-
ness states that any trace modified by the enforcer must be compliant with P ,
while transparency states that the enforcer does not alter a trace that already
complies with the policy. A transparent enforcer modifies the system’s behavior
only when necessary. The following definition formalizes these notions.

Definition 4. An enforcer E is sound with respect to a property P iff for any
σ ∈ Tω, we have E(σ) ∈ P . An enforcer E = (S, s0, µ) is transparent with respect
to a property P iff for all σ ∈ P , E(σ) = σ. A property P (resp. a formula φ) is
enforceable iff there exists a sound enforcer with respect to P (resp. L(φ)).

4 Enforceable MFOTL Formulae

In this section, we present EMFOTL, an expressive and enforceable fragment of
MFOTL. An enforcer for EMFOTL formulae will be presented in Section 5.

EMFOTL is defined using the typing rules in Figure 3. These consist of
sequents of the form Γ ⊢ φ : α, reading ‘φ types to α under Γ ’. Here, context
Γ : E → {C,S} is a mapping from event names to either of the symbols C or S,
φ is an MFOTL formula, and α is a type in {C,S}. The type names C and S
overload the names of the sets of suppressable and causable events in a natural
way: any event ec(t) with ec ∈ C (resp. es ∈ S) has type C (resp. S) under the
context {ec 7→ C} (resp. {es 7→ S}). EMFOTL is defined as the set of all φ for
which ∃Γ. Γ ⊢ φ : C. Intuitively, a formula types to C under Γ (‘φ is causable
under Γ ’) if it can be enforced by causing events ec(t) such that Γ (ec) = C
and suppressing events es(t) such that Γ (es) = S. It types to S under Γ (‘φ is
suppressable under Γ ’) if ¬φ can be enforced under the same conditions on Γ .

We now review the typing rules presented in Figure 3. Our approach for
enforcing temporal operators is illustrated in Figure 4.

Constants and predicates (Rules ⊤C, ⊥S, EC, ES). The constant ⊤ (resp.
⊥) is causable (resp. suppressable). Event e(t1, . . . , tk) is causable (resp. sup-
pressable) under Γ if e ∈ C and Γ (e) = C (resp. e ∈ S and Γ (e) = S).

Negation (Rules ¬C, ¬S). Negation exchanges C and S: a formula is causable
iff its negation is suppressable; it is suppressable iff its negation is causable.

Conjunction (Rules ∧C, ∧SL, ∧SR). A conjunction is causable if both of its
conjuncts are causable; it is suppressable if either of its conjuncts is suppressable.

8 F. Hublet et al.

⊢ e(. . . , x, . . .) : PG(x)+
E+

PG
⊢ φ : PG(x)¬p

⊢ ¬φ : PG(x)p
¬PG

x ̸= z ⊢ φ : PG(z)p

⊢ ∃x. φ : PG(z)p
∃PG

⊢ φ : PG(x)+

⊢ φ ∧ ψ : PG(x)+
∧L+

PG

⊢ ψ : PG(x)+

⊢ φ ∧ ψ : PG(x)+
∧R+

PG

⊢ φ : PG(x)− ⊢ ψ : PG(x)−

⊢ φ ∧ ψ : PG(x)−
∧−

PG

0 /∈ I ⊢ φ : PG(x)+

⊢ φ SI ψ : PG(x)+
SL+
PG

⊢ ψ : PG(x)+

⊢ φ SI ψ : PG(x)+
SR+
PG

0 ∈ I ⊢ ψ : PG(x)−

⊢ φ SI ψ : PG(x)−
S−
PG

0 /∈ I ⊢ φ : PG(x)+

⊢ φ UI ψ : PG(x)+
UL+

PG

⊢ φ : PG(x)+ ⊢ ψ : PG(x)+

⊢ φ UI ψ : PG(x)+
ULR+

PG

Past-guardedness
0 ∈ I ⊢ ψ : PG(x)−

⊢ φ UI ψ : PG(x)−
U−

PG

⊢ φ : PG(x)+

⊢ I φ : PG(x)+
 +

PG

Γ ⊢ ⊤ : C ⊤
C

Γ ⊢ ⊥ : S ⊥
S

e ∈ C Γ (e) = C
Γ ⊢ e(t1, . . . , tk) : C EC

e ∈ S Γ (e) = S
Γ ⊢ e(t1, . . . , tk) : S ES

Γ ⊢ φ : S
Γ ⊢ ¬φ : C ¬

C
Γ ⊢ φ : C
Γ ⊢ ¬φ : S ¬

S
Γ ⊢ φ : C

Γ ⊢ ∃x. φ : C ∃
C

Γ ⊢ φ : S ⊢ φ : PG(x)+

Γ ⊢ ∃x. φ : S ∃S

Γ ⊢ φ : C Γ ⊢ ψ : C
Γ ⊢ φ ∧ ψ : C ∧C

Γ ⊢ φ : S
Γ ⊢ φ ∧ ψ : S ∧

SL
Γ ⊢ ψ : S

Γ ⊢ φ ∧ ψ : S ∧
SR

0 ∈ I Γ ⊢ ψ : C
Γ ⊢ φ SI ψ : C SC

0 /∈ I Γ ⊢ φ : S
Γ ⊢ φ SI ψ : S SSL

0 ∈ I Γ ⊢ φ : S Γ ⊢ ψ : S
Γ ⊢ φ SI ψ : S SSLR

Γ ⊢ ψ : S
Γ ⊢ φ UI ψ : S US

b ̸=∞ Γ ⊢ ψ : C
Γ ⊢ φ U[0,b] ψ : C UCR

b ̸=∞ Γ ⊢ φ : C Γ ⊢ ψ : C
Γ ⊢ φ U[a,b] ψ : C UCLR

Typing of formulae as
causable/suppressable

Γ ⊢ φ : C b > 0

Γ ⊢ #[0,b) φ : C #C Γ ⊢ φ : S
Γ ⊢ #I φ : S #

S

Fig. 3. Typing rules for EMFOTL

Quantifiers (Rules ∃C, ∃S). The formula φ′ = ∃x. φ is causable if φ is caus-
able: it is enough to set x to some value v and cause φ[x/v] to cause φ′.In contrast,
to suppress φ′ at i, we must ensure that no value of v ∈ D can satisfy φ. If φ de-
pends on the future, then values of v satisfying φ′ may only be discovered strictly
after i. Then, it may not be possible to decide which φ[x/v] to suppress at i. Our
fragment rules this case out by requiring that x be past-guarded in φ, i.e., that any
value of x that satisfies φ is a constant or present in the trace up until i. Formally:

Definition 5 (Past-guardedness). A variable x is past-guarded in φ iff
∀v, i. v, i ⊨ φ ∧ x ∈ dom v =⇒ v(x) ∈ ADi(φ).

Past-guardedness can be soundly overapproximated using the type system in
the upper half of Figure 3. The PG typing rules define sequents of the form
⊢ φ : PG(x)p, where p ∈ {+,−}. In our extended report [42], we prove

Lemma 1. For p ∈ {+,−}, if ⊢ φ : PG(x)p, then x is past-guarded in pφ.

Proactive Real-Time First-Order Enforcement 9

(a) φ SI ψ 0 ∈ I SC

τi

•

τi−1

•

τi+1

{ ψ }

(b) φ SI ψ 0 /∈ I SSL •••
{ψ} {φ} { φ }

(c) φ SI ψ SSLR •••
{φ} {φ} { φ,ψ }

(d) φ U[a,b] ψ b ̸=∞ UCLR

{ φ } { φ } . . . { ψ }
• • •

τj = τi + b

(e) φ U[0,b] ψ b ̸=∞ UCR

{φ} {φ} . . . { ψ }
• • •

¬φ ∨ τj = τi + b

(f) φ UI ψ US • •
{ ψ }{ ψ } . . . until¬φ or

τj − τi /∈ I

(g) #[0,b) φ b > 0 #C • •
{ φ }. . .

(h) #I φ #S • •
{ φ }. . .

Fig. 4. Enforcement for temporal operators: φ = cause φ and φ = suppress φ

Since (Rules SC, SSL, SSLR). As enforcers cannot affect the past, causation
of φ′ = φ SI ψ is only possible when 0 ∈ I and ψ is enforceable. In this case, φ′ is
caused by causing ψ in the present (Figure 4, a). To suppress φ′, we consider two
scenarios. If 0 /∈ I, then to suppress φ′, it suffices to suppress φ in the present
(Figure 4, b). If 0 ∈ I, both φ and ψ may need to be suppressed (Figure 4, c).

Until (Rules US, UCR, UCLR). The formula φ′ = φ UI ψ is causable if both
φ and ψ are causable: one can cause φ until the interval I has elapsed, and then
cause ψ ‘in the nick of time’ (Figure 4, d). This requires a finite upper bound
for I; otherwise, the enforcer may wait indefinitely to cause ψ, producing a non-
compliant trace. (For I = [a,∞), we could enforce φ′ non-transparently by caus-
ing ψ after an arbitrary, finite interval [a, b). In this case, the user could have
as well specified φ U[a,b) ψ. Hence, our type system requires a finite I.) Alter-
natively, if 0 ∈ I, then φ′ can be caused when ψ is causable, with the enforcer
causing ψ as soon as φ ceases to hold or the interval has elapsed (Figure 4, e).
In contrast, φ′ can be suppressed whenever ψ is suppressable (Figure 4, f). This
also applies when I is unbounded: if necessary, the formula ψ can be suppressed
indefinitely. Enforcement can thus be performed for formulae that are generally
not supported by existing monitors [18]. Namely, monitors exclude non-future-
bounded formulae, for which compliance cannot be guaranteed by observing a
finite prefix of the trace and hence verdicts cannot be given in finite time. How-
ever, an enforcer can ensure compliance at every time-point.

10 F. Hublet et al.

Previous The formula φ′ = I φ can neither be caused nor suppressed with-
out editing databases of events that happened strictly in the past. This goes
beyond the enforcer’s capabilities in our model.

Next (Rules #C, #S). If φ is suppressable, the formula φ′ = #I φ is also sup-
pressable: φ′ is suppressed by suppressing φ at the next time-point (Figure 4, g).
In contrast, causing φ′ is not possible for arbitrary I. If I = [a, b) with a > 0, then,
to cause φ′ at i, one must ensure τi+1 ≥ τi + a. But the next time-point in the in-
put trace might be τi+1 < τi + a (e.g., τi+1 = τi), and this timestamp cannot be
suppressed. If I = [0, 0], then enforcing φ′′ = □φ′ is not possible, since no trace
satisfies φ′′ (a trace must satisfy progress): one cannot both support I = [0, 0]
in rule #C and use the previous definition of US. Therefore, our fragment only
supports causation of #I φ for intervals I of the form [0, b), b > 0 (Figure 4, h).
Our use of the context Γ is inspired by Hublet et al. [39]. By ensuring that all
events with the same name are only caused or only suppressed, we exclude non-
enforceable formulae such as e ∧ ¬e, where e is both causable and suppressable.

Example 6. We show that φdel presented in Example 3 is in EMFOTL. We work
with the “desugared” variant of φdel (instead of using abbreviations like ♢):

φ′
del ≡ ¬

(
⊤ U

(
∃c, d, u. deletion_request (c, d, u) ∧

(
¬
(
⊤ U[0,30] delete (c, d, u)

))))
Furthermore, we shorten φ′

del ≡ ¬(⊤ U φ∃1
), where:

φ∃1
≡ ∃c. φ∃2

φ∃2
≡ ∃d. φ∃3

φ∃3
≡ ∃u. φ∧ φ∧ ≡ φ∧1

∧ φ∧2

φ∧1
≡ deletion_request (c, d, u) φ∧2

≡ ¬φU φU ≡ ⊤ U[0,30] delete (c, d, u)

Lastly, we use the typing rules presented in Figure 3 to show that φ′
del types to C:

P1

P2

P3

delete ∈ C
{delete 7→ C} ⊢ delete(c, d, u) : C EC

{delete 7→ C} ⊢ φU ≡ ⊤ U[0,30] delete (c, d, u) : C
UCR

{delete 7→ C} ⊢ φ∧2
≡ ¬φU : S ¬S

{delete 7→ C} ⊢ φ∧ ≡ φ∧1
∧ φ∧2

: S ∧SR

{delete 7→ C} ⊢ φ∃3
≡ ∃u. φ∧ : S ∃S

{delete 7→ C} ⊢ φ∃2 ≡ ∃d. φ∃3 : S ∃S

{delete 7→ C} ⊢ φ∃1 ≡ ∃c. φ∃2 : S ∃S

{delete 7→ C} ⊢ ⊤ U φ∃1
: S US

{delete 7→ C} ⊢ φ′
del ≡ ¬(⊤ U φ∃1

) : C ¬C

where P1,2,3 respectively stand for:

⊢ φ∧1 : PG(c)+
E+

PG

⊢ φ∧ : PG(c)+
∧L+

PG u ̸= c

⊢ φ∃3
: PG(c)+

∃PG
d ̸= c

⊢ φ∃2
: PG(c)+

∃PG

⊢ φ∧1 : PG(d)+
E+

PG

⊢ φ∧ : PG(d)+
∧L+

PG u ̸= d

⊢ φ∃3
: PG(d)+

∃PG

⊢ φ∧1 : PG(u)+
E+

PG

⊢ φ∧ : PG(u)+
∧L+

PG

The formula φlaw is also in EMFOTL (see our extended report [42]).

Proactive Real-Time First-Order Enforcement 11

foinit,φ1 = λ_. φ1

foτ,#,I,φ1
= λτ ′. if τ ′ − τ ≤ sup I then (¬TP) UI−(τ ′−τ) (TP ∧ φ1) else ⊥

foτ,U,I,φ1,φ2 = λτ ′. if τ ′ − τ ≤ sup I then (TP→ φ1) UI−(τ ′−τ) (TP ∧ φ2) else ⊥

Fig. 5. Mappings in the first component of future obligations

5 Enforcing EMFOTL

We now describe our enforcement algorithm. First, we present the enforcer’s state,
which consists of a set of obligations (Section 5.1). We then explain how Lima et
al.’s monitoring algorithm [49] can be extended to check the satisfaction of a for-
mula φ under assumptions about the future (Section 5.2). Finally, we present our
algorithm (Section 5.3) and prove its soundness and transparency (Section 5.4).

5.1 Obligations

Our algorithm manipulates sets of obligations that encode the formulae to be
caused or suppressed in the future. There are two types of obligations, present
and future obligations. A present obligation is a triple (φ, v, p) of an MFOTL
formula φ, a valuation v, and a polarity p ∈ {+,−} such that pφ ∈ EMFOTL.
After reading a new time-point, our enforcer’s state will contain a finite set of
such present obligations. Some of these obligations will be immediately discharged
via causation or suppression. Others will be processed to generate simpler present
obligations and new future obligations that will then be propagated to the next
time-point. Future obligations are triples (ξ, v, p) where ξ : N → MFOTL maps
timestamps to EMFOTL formulae and v and p are as before. The set of future
obligations is denoted by FO. The mapping ξ is evaluated with the next timestamp
to generate present obligations at the next time-point in the trace.

In some cases (e.g., φdel), the enforcer must insert a time-point. In other cases
(e.g., φlaw), the enforcer can modify the events at existing time-points. To insert a
time-point only when necessary, we use a special, causable TP event encoding the
existence of a time-point. When processing a time-point already present in the
trace (l. 6 in Algorithm 1), the enforcer receives the additional present obligation
(TP, ∅,+), as the time-point cannot be suppressed. When computing P-commands
(l. 3 in Algorithm 1), this obligation is not given to the enforcer, but TP may be
generated from other obligations, in which case a time-point is inserted.

Figure 5 shows the mappings used in the first component of future obligations.
There are three types of mappings, corresponding to the obligations passed to
the enforcer in the initial state and those generated from unrolling # and U.

5.2 Checking satisfaction of MFOTL formulae under assumptions

Our enforcer uses WhyMon’s monitoring algorithm to check the satisfaction of
formulae. Unlike Lima et al. [49], we must however compute satisfactions under
assumptions encoding future obligations. To guarantee, e.g., that causing φ in
the present and satisfying fo = (λτ ′.⊤ U (TP ∧ ¬φ), ∅,−) guarantees □φ, one
must be able to check that after causing φ, □φ is satisfied at i assuming that fo

12 F. Hublet et al.

(foτ,#,I,φ1
, v,+) ∈ X

v, i,X ⊢+ #I φ1

#+
assm

v, i,X ⊢+ φ1 (foτ,U,I,φ1,φ2 , v,+) ∈ X
v, i,X ⊢+ φ1 UI φ2

U+
assm

(foτ,#,I,φ1
, v,−) ∈ X

v, i,X ⊢− #I φ1

#−
assm

0 ∈ I =⇒ v, i,X ⊢− φ2 (foτ,U,I,φ1,φ2 , v,−) ∈ X
v, i,X ⊢− φ1 UI φ2

U−
assm

Fig. 6. Additional proof rules

is satisfied at i+1. Since the enforcer will suppress all time-points not containing
TP, future time-points can be assumed to all contain TP.

Let {C}+ := C, {C}− := S, and σTP = ⟨(τi, Di ∪ {TP})⟩i∈N for the trace
σ = ⟨(τi, Di)⟩i∈N. Consider φ ∈ EMFOTL, and obtain Γ such that Γ ⊢ φ : C.
Our satisfiability checker under assumptions is a function

Sat : (V → D)× MFOTL × Tf × P(FO) → {⊤,⊥}

. The implementation of the checker must ensure that, for any p ∈ {+,−}, φ
such that Γ ⊢ φ : {C}p, and X ⊆ FO, Sat(v, φ, σ′, X) implies

∀ts ∈ N, D ∈ DB, σ′′ ∈ Tω. (∀(ξ, v′, p′) ∈ X. v′, |σ′| ⊨
σ′·(ts,D)·σ′′TP p

′ξ(ts))

=⇒ v, |σ′| − 1 ⊨
σ′·(ts,D)·σ′′TP φ. (⋆)

Intuitively, this condition expresses that whenever Sat(v, φ, σ′, X) is true and
the (infinite) trace σ = σ′ · (ts,D) · σ′′TP satisfies all the future obligations in X
at time-point |σ′|, then φ holds over σ at time-point |σ′| − 1.

For our algorithm to eventually recognize satisfaction and terminate, one
must ensure that for large enough X, the implication (⋆) is an equivalence. This
guarantees that after generating a finite set of reactions and future obligations,
the algorithm can use Sat to assess that no more immediate actions are needed.

To support assumptions about the future, we extend Lima et al’s algorithm [49]
with the proof rules in Figure 6. In our extended report [42], we show

Lemma 2. The proof system of [49] extended with the rules from Figure 6 yields
a decision procedure Sat that satisfies (⋆).

Lemma 3. There exists a set FO+
i,ts(φ) such that whenever X ⊇ FO+

|σ|,τ|σ|
(φ),

the converse of (⋆) also holds for Sat constructed as in Lemma 2.

5.3 The enforcement algorithm

Our enforcer’s update function enf is shown in Algorithm 2. It is used to define
an enforcer Eφ = (S, sφ, enf), where S = P(FO) and sφ = {(foinit,φ, ∅,+)}. In the
algorithm and its description below, we annotate operators that fulfill the typing
conditions in Figure 3 with the respective typing rule names. For example, we write
φUCLR

[a,b] ψ to denote φU[a,b]ψ where b ̸= ∞, Γ ⊢ φ : C, and Γ ⊢ ψ : C under some Γ .
As required by Definition 2, the function enf takes a trace σ, a set of future

obligations X, and a timestamp ts as input. If ts = ⊥, i.e., the enforcer processes

Proactive Real-Time First-Order Enforcement 13

a time-point already present in the trace, then ts is set to the latest timestamp
τ|τ | (line 4). The enforcer computes a (closed) formula Φ that summarizes all
obligations at the present time-point (line 5). Then Φ, σ, an empty set of future
obligations, and an empty valuation are passed to enf+ts,⊥ (line 6). The function
enf+ts,b takes a formula φ, a trace σ, a set of (new) future obligations X, and a
valuation v as input, and returns a triple (DC , DS , X

′) such that DC is a set of
events to cause, DS is a set of events to suppress, and X ′ is an updated version
of X. The function is parameterized by the current timestamp ts and a Boolean
b that is true iff the current time-point is the last one with the current timestamp.
The definition of enf+ (resp. enf−) guarantees that if we update Di according
to DS and DC and assume that all obligations in X ′ are satisfied at time-point
i+ 1, then φ is always (resp. never) satisfied under v at i on the new trace.

After computing DS , DC , and X ′, an R-command RCom(DC , DS) is returned
(line 7) and the state is updated to X ′. If ts ≠ ⊥, a similar approach is followed,
but now TP is not conjoined with Φ (line 9) and the boolean b is set to ⊤ as
enforcement happens ‘in the nick of time.’ If TP is part of the set DC returned by
enf+, then a P-command PCom(DC) and a new state X ′ are returned. Otherwise,
NoCom is returned and the state is not updated.

The functions enf+ and enf− recurse over the structure of φ. The traversal
of φ is guided by the typing: the function enf+ (resp. enf−) is only called
on subformulae of type C (resp. S). The algorithm implements the approach
described in Section 4. For space reasons, we only explain the more complex
cases: φ = φ1 ∧C φ2, φ = ∃Sx. φ1, and φ = φ1 U

CLR
I φ2.

Causing φ1 ∧ φ2 (Algorithm 2, enf+ l. 9). Causing φ1 ∧ φ2 where both φ1

and φ2 are causable requires a fixed-point computation [39]. Consider, e.g., the
EMFOTL formula φ = ψ ∧ (ψ → χ), where ψ and χ both type to C. If neither ψ
nor χ are satisfied, then the right conjunct of φ is satisfied; however, to satisfy
the left conjunct, ψ must be caused. But after causing ψ, the right conjunct
is not satisfied, and χ must be caused too. In general, the two conjuncts are
repeatedly enforced until both are satisfied. This is achieved by combining the
function fp (performing a fixed-point computation) and enf+and,φ1,φ2,v,ts

that calls
the function enf+ on both φ1 and φ2 if none of these formulae is satisfied. In our
extended report [42], we prove the termination of this fixed-point computation.

Suppressing ∃x. φ1 (Algorithm 2, enf− l. 13). The suppression of ∃ follows
a similar pattern, but this time there are AD|σ|(φ1) rather than just 2 cases to
consider, corresponding to all potential values of the (past-guarded) variable x.
Similar to the previous case, we prove termination in our extended report [42].

Causing φ1 U[a,b] φ2, b ̸= ∞ (Algorithm 2, enf+ l. 17–22). There are two
cases for causing φ1 UI φ2: we cause φ1 and generate the future obligation
foτ,U,I,φ1,φ2 if I ̸= [0, 0] or b = ⊥; otherwise, we cause φ2 and TP.

Example 7. Let us enforce φdel on σ2. Consider the following abbreviations:

φdel ≡ □φ∀ φ∀ ≡ ∀c, d, u. deletion_request (c, d, u) → ♢[0,30] delete (c, d, u)

φU ≡ (TP → ⊤) U (TP ∧ ¬φ∀) E1 ≡ deletion_request(2, 1, 1) E′
1 ≡ delete(2, 1, 1)

fox,y
2 ≡ (λτ ′. ♢[0,x]−(y−τ ′) (TP ∧ delete (c, d, u)) , {c 7→ 2, d 7→ 1, u 7→ 1},+)

14 F. Hublet et al.

1: function enf(σ,X, ts)
2: let ⟨τ⟩, ⟨D⟩ = unzip(σ) in
3: if ts = ⊥ then
4: let ts = τ|τ | in
5: let Φ = TP ∧

∧
(ξ,v,⊤)∈X ξ(ts)[v] ∧

∧
(ξ,v,⊥)∈X ¬ξ(ts)[v] in

6: let (DC , DS , X
′) = enf+ts,⊥(Φ, σ, ∅, ∅) in

7: (RCom(C \ {TP}, S), X ′)
8: else
9: let Φ =

∧
(ξ,v,⊤)∈X ξ(ts)[v] ∧

∧
(ξ,v,⊥)∈X ¬ξ(ts)[v] in

10: let (DC , DS , X
′) = enf+ts,⊤(Φ, σ · (ts, ∅), ∅, ∅) in

11: if TP ∈ DC then (PCom(DC \ {TP}), X ′) else (NoCom, X)
12: end if
13: end function

1: function enf+ts,b(φ, σ,X, v)
2: if φ = ⊤C then
3: (∅, ∅, ∅)
4: else if φ = p(t) then
5: ({(p, (J t Kv))}, ∅, ∅)
6: else if φ = ¬Cφ1 then
7: enf−ts,b(φ1, σ,X, v)

8: else if φ = φ1 ∧C φ2 then
9: fp(σ,X, enf+and,φ1,φ2,v,ts

)

10: else if φ = ∃Cx. φ1 then
11: enf+ts,b(φ1, σ,X, v[0/x])

12: else if φ = #C
I φ1 then

13: (∅, ∅, {(foτ,#,I,φ1
, v,+)})

14: else if φ = φ1 S
C
I φ2 then

15: enf+ts,b(φ2, σ,X, v)

16: else if φ = φ1 U
CLR
I φ2 then

17: if I = [0, 0] ∧ b then
18: enf+ts,b(φ2, σ,X, v) ⋓ ({TP}, ∅, ∅)
19: else
20: enf+ts,b(φ1, σ,X, v) ⋓
21: (∅, ∅, {(foτ,U,I,φ1,φ2 , v,+)})
22: end if
23: else if φ = φ1 U

CR
I φ2 then

24: if I = [0, 0] ∧ b then
25: enf+ts,b(φ2, σ,X, v) ⋓ ({TP}, ∅, ∅)
26: else if ¬Sat(v, φ1, σ,X) then
27: enf+ts,b(φ2, σ,X, v)
28: else
29: (∅, ∅, {(foτ,U,I,φ1,φ2 , v,+)})
30: end if
31: end if
32: end function

1: function fp(σ · ⟨(τ,D)⟩ , X, f)
2: (DC , DS)← (∅, ∅)
3: r ← None
4: while (DC , DS , X) ̸= r do
5: r ← (DS , DC , X)
6: let D′ = (D \DS) ∪DC in
7: (DC , DS , X)← r ⋓ f(σ · ⟨(τ,D′)⟩ , X)
8: end while
9: (DC , DS , X)

10: end function

1: function enf−ex,φ1,v,ts,b
(σ,X)

2: r ← (∅, ∅, ∅)
3: for d ∈ AD|σ|(φ1) do
4: if ¬Sat(v[d/x],¬φ1, σ,X) then
5: r ← r ⋓ enf−ts,b(φ1, σ,X, v[d/x])
6: end if
7: end for
8: r
9: end function

1: function enf−ts,b(φ, σ,X, v)
2: if φ = ⊥S then
3: (∅, ∅, ∅)
4: else if φ = p(t) then
5: (∅, {(p, (J t Kv))}, ∅)
6: else if φ = ¬Sφ1 then
7: enf+ts,b(φ1, σ,X, v)

8: else if φ = φ1 ∧SL φ2 then
9: enf−ts,b(φ1, σ,X, v)

10: else if φ = φ1 ∧SR φ2 then
11: enf−ts,b(φ2, σ,X, v)

12: else if φ = ∃Sx. φ1 then
13: fp(σ,X, enf−ex,φ1,v,ts,b

)

14: else if φ = #S
I φ1 then

15: (∅, ∅, {(foτ,#,I,φ1
, v,−)})

16: else if φ = φ1S
SL
I φ2 then

17: enf−ts,b(φ1, σ,X, v)

18: else if φ = φ1S
SR
I φ2 then

19: let φ′ =
20: ¬(φ1 ∧SL (φ1 SI φ2)) in
21: fp(σ,X, enf+and,φ′,¬φ2,v,ts,b

)

22: else if φ = φ1U
S
Iφ2 then

23: fp(σ,X, enf−until,I,φ1,φ2,v,ts,b
)

24: end if
25: end function

1: function enf−until,I,φ1,φ2,v,ts,b
(σ,X)

2: r ← (∅, ∅, ∅)
3: if 0 ∈ I ∧ ¬Sat(v,¬φ2, σ,X) then
4: r ← enf−ts,b(φ2, σ,X, v)
5: end if
6: if ¬Sat(v,¬φ1, σ,X) then
7: r ← r ⋓ (∅, ∅, {(foτ,U,I,φ1,φ2 , v,−)}
8: end if
9: r

10: end function

1: function enf+and,φ1,φ2,v,ts,b
(σ,X)

2: r ← (∅, ∅, ∅)
3: if ¬Sat(v, φ1, σ,X) then
4: r ← r ⋓ enf+ts,b(φ1, σ,X, v)
5: end if
6: if ¬Sat(v, φ2, σ,X) then
7: r ← r ⋓ enf+ts,b(φ2, σ,X, v)
8: end if
9: r

10: end function

Algorithm 2: Proactive real-time first-order enforcement algorithm

Proactive Real-Time First-Order Enforcement 15

tp ts b X Φ DC DS X ′ Response

0 10 ⊥ {(λ_. φdel, ∅,+)} TP ∧ φdel {TP} ∅ {fo1, fo
30,10
2 } RCom(∅, ∅)

– 10 ⊤ {fo1, fo
30,10
2 } φU ∧ ♢[0,30](TP ∧ E′

1) ∅ ∅ {fo1, fo
30,10
2 } NoCom

– 11 ⊤ {fo1, fo
30,10
2 } φU ∧ ♢[0,29](TP ∧ E′

1) ∅ ∅ {fo1, fo
29,11
2 } NoCom

. .
– 39 ⊤ {fo1, fo

2,38
2 } φU ∧ ♢[0,1](TP ∧ E′

1) ∅ ∅ {fo1, fo
1,39
2 } NoCom

– 40 ⊤ {fo1, fo
1,39
2 } φU ∧ ♢[0,0](TP ∧ E′

1) {TP, E′
1} ∅ {fo1} PCom({E′

1})
– 41 ⊤ {fo1} φdel ∅ ∅ {fo1} NoCom

. .
– 49 ⊤ {fo1} φdel ∅ ∅ {fo1} NoCom
1 50 ⊥ {fo1} TP ∧ φdel {TP} ∅ {fo1} RCom(∅, ∅)

Fig. 7. Enforcement of the formula φdel on trace σ2

Figure 7 shows our algorithm’s execution. Initially, enf decomposes its goal Φ =
TP∧φdel into the present obligations (TP, ∅,+) and (φdel, ∅,+). The former is dis-
charged by causing TP; the latter is unrolled into the present obligation (φ∀, ∅,+)
and the future obligation fo1 = (fo10,U,[0,∞),⊤,¬φ∀ , ∅,−) = (λ_. φU, ∅,−). The
present obligation (φ∀, ∅,+) is violated, since deletion_request(2, 1, 1) is satisfied
but at this point there is no corresponding delete. In this case, enf+10,⊥ generates
the future obligation fo30,10

2 . Satisfying this future obligation guarantees the sat-
isfaction of Φ, hence the algorithm proceeds. Next, the algorithm processes the
timestamp 10 ‘in the nick of time’. The function enf computes Φ = fo1(10) ∧
fo30,10

2 (10) = φU ∧♢[0,30](TP∧E′
1) and calls enf+10,⊤ on Φ. First, it decomposes Φ

into the present obligations po1 = (φ∀, ∅,+) and po2 = (♢[0,30](TP∧E′
1), ∅,+) and

the future obligation fo1. The present obligation po1 is vacuously satisfied, since no
deletion_request takes place. In contrast, the satisfaction of po2 can rely on the sat-
isfaction of the future obligation (fo30,10

2 , ∅,+) at the next time-point. Hence, the
enforcer emits NoCom and propagates the future obligationsX ′ = {fo1, fo

30,10
2 } to

the next time-point. The timestamp 11 is also processed ‘in the nick of time’. The
goal Φ = fo1(11) ∧ fo30,10

2 (11) = φU ∧ ♢[0,29](TP ∧ E′
1) is computed, and reduced

to the future obligations X ′ = {fo1, fo
29,11
2 }. Similar iterations occur until time-

stamp 40, when the goal becomes Φ = fo1(40)∧ fo1,39
2 (40) = φU ∧♢[0,0](TP∧E′

1).
Here, enf+40,⊤ produces the present obligations (TP, ∅,+) and (E′

1, ∅,+), which
are discharged by causing TP and E′

1, respectively. Thus, DC = {TP, E′
1} and the

command PCom({E′
1}) is emitted, resulting in (40, {E′

1}) being inserted into the
trace. The future obligations X ′ = {fo1} are propagated to the next timestamp.
Similar iterations occur until timestamp 50. At this point, b = ⊥ and the trace
is already compliant, so the enforcer responds with RCom(∅, ∅).

5.4 Correctness

Let φ be a closed formula to be enforced. The proofs of all lemmata are given in our
extended report [42]. First, recall the following standard definition of safety [6]:

Definition 6. P is a safety property iff for any σ ∈ Tω \P , there exists a finite
prefix σ′ ∈ Tf of σ such that for all σ′′ ∈ Tω, we have σ · σ′′ /∈ P . A formula φ
is a safety formula when L(φ) is a safety property.

16 F. Hublet et al.

Our algorithm can enforce formulae that are not safety formulae. This is the
case, e.g., for any ψ ∨ ♢χ ≡ ¬(¬ψ ∧ ¬(⊤ U χ)), where ψ types to C. In this case,
enforcement is performed greedily: if the monitor cannot construct a proof of ♢χ
(which occurs whenever χ cannot be satisfied in the present), then ψ is caused.
Thus our algorithm actually enforces a stronger formula, which we denote by
[ψ ∨ ♢χ]+ ≡ ¬(¬ψ ∧Rω ¬(⊤ U χ)), where ∧Rω has the semantics

v, i ⊨σ φ ∧Rω ψ iff v, i ⊨σ φ and ∃σ′. v, i ⊨σ|..i·σ′ ψ.

This semantics states that φ ∧Rω ψ holds whenever φ holds on σ at time-point i
and there exists at least one extension of the prefix σ|..i on which ψ holds. The
formula [ψ ∨♢χ]+ thus requires than ψ holds on σ at time-point i and ♢ψ holds
on σ at time-point i for any extension of σ |..i. The formula [ψ ∨ ♢χ]+, unlike
ψ ∨ ♢χ, is safety. In our extended report [42], we define a similar transformation
[•]p, p ∈ {+,−} for all operators and prove
Lemma 4. For any φ such that Γ ⊢ φ : {C}p, we have v, i |=σ p[φ]p =⇒ v, i |=σ

pφ. In particular, L([φ]+) ⊆ L(φ).
We prove that Eφ soundly enforces [φ]+, and hence φ:
Theorem 1 (Soundness). If φ ∈ EMFOTL, the enforcer Eφ is sound with
respect to L([φ]+) ⊆ L(φ). As a consequence, φ is enforceable.

In our model, transparent enforcement of non-safety formulae such as ψ ∨♢χ
is generally not possible, since the necessity to cause ψ depends on future events:
Lemma 5. If a property admits a transparent enforcer, it is a safety formula.

Thus, when enforcing a non-safety formula φ, one can at best achieve trans-
parency with respect to some sound safety approximation φ′ of φ. We prove:
Theorem 2 (Transparency). If φ ∈ EMFOTL, the enforcer Eφ is transparent
with respect to L([φ]+).

By imposing more constraints on the formulae (e.g., the formula χ must not
depend on the future in ψ∧SLχ), one can obtain an EMFOTL fragment for which
[φ]+ = φ and the enforcer Eφ is transparent (see our extended report [42]).

6 Evaluation

We implemented our type system and enforcement algorithm in a tool, called
WhyEnf, consisting of 2 800 lines of OCaml code. WhyEnf uses a modified
version of WhyMon [49], which we call WhyMon*. It ignores the explanations’
structures (not required by our algorithm) and returns only Boolean verdicts.

Our evaluation aims to answer the following research questions:
RQ1. Is EMFOTL expressive enough to formalize real-world policies?

Is manual formula rewriting necessary, as in previous works [14,40]?
RQ2. At what maximum event rate can WhyEnf perform real-time enforcement?
RQ3. Do WhyEnf’s performance and capabilities improve upon the state-of-

the-art?
The notion of ‘real-world policies’ in RQ1 is domain-dependent. In the following,
we demonstrate our approach’s effectiveness in the case of privacy regulations.

Proactive Real-Time First-Order Enforcement 17

collect(c, d, u)699 use(c, d, u)-2316 consent(u, c)699 legal_grounds(u, d)397 revoke(u, c)+8

inform(u)+0 deletion_request(c, d, u)8 delete(c, d, u)+521 share(p, d)982 notify(p, d)+0

“Minimization” φmin = □(∀c, d, u. collect(c, d, u)→ ♢ use(c, d, u))

“Limitation” φlim = □(∀c, d, u. collect(c, d, u)→ ♢ delete(c, d, u))

“Lawfulness” φlaw = □(∀c, d, u. use(c, d, u)→ ♦(consent(u, c) ∨ legal_grounds(u, d)))

“Consent” φcon = □(∀c, d, u. use(c, d, u)→ (♦ legal_grounds(u, d)) ∨ (¬revoke(u, c) S consent(u, c)))

“Information” φinf = □(∀c, d, u. collect(c, d, u)→ ((# inform(u)) ∨ (♦ inform(u))))

“Deletion” φdel = □(∀c, d, u. deletion_request(c, d, u)→ ♢[0,30] delete(c, d, u))

“Sharing” φsha = □(∀c, d, u, p. deletion_request(c, d, u) ∧ (♦ share(p, d))→ ♢[0,30] notify(p, d))

c: data category; d: data ID; u: user ID; p: processor ID; -: suppressable; +: causable

Fig. 8. Selected events and policies from Arfelt et al. [7]

Case study. Arfelt et al. [7] define events and MFOTL formulae formalizing
core GDPR provisions that they monitor on a trace produced by a real-world
system [24]. Relevant events (superscripted by their number of occurrences in the
trace) and formulae are shown in Figure 8 and Examples 1 and 3. We pre-process
the trace to obtain 3 846 time-points containing 5 630 system events distributed
over 515 days. We interpret the ‘Lawyer review’ and ‘Architect review’ events as
both use and share (sharing with third-parties) events, and the ‘Abort’ events as
both revoke (revoking consent) and deletion_request. Otherwise, we follow Arfelt
et al.’s pre-processing. We make the following assumptions [40]: use events are
suppressable, while delete, inform (informing the user), and notify (notifying a
third-party) events are causable. All metric constraints are specified in days.

RQ1: Expressiveness. Except for φmin, all formulae are in EMFOTL. Unlike in
previous works [15, 18, 40], no further policy engineering (e.g., manual rewrit-
ing to equivalent formulae in supported fragments) is needed. For all enforce-
able formulae except φlim, our algorithm guarantees transparent enforcement.
For φlim, which contains an unbounded ♢ operator, non-transparent enforcement
is possible by enforcing the stronger formula φb

lim = □(∀c, d, u. collect(c, d, u) →
♢[0,b] delete(c, d, u)) for any b ∈ N. The formula φmin, capturing data minimiza-
tion, is intrinsically non-enforceable, as a sound Eφmin must either always suppress
collect, or eventually cause use, which is only suppressable.

WhyEnf’s type system helps determine appropriate suppressible and caus-
able events. For instance, if use was marked as only-observable, the type checker
would state that φlaw is not enforceable and suggest to make use suppressible,
or otherwise make either consent or legal_ground causable. Since use actually is
suppressable, the type checker concludes that φlaw is transparently enforceable.

RQ2: Maximum event rate. We enforce the enforceable formulae from Figure 8,
i.e., all but φmin. As we do not have access to the SuS, we simulate online
enforcement by reproducing [45] the events from the above trace to WhyEnf
at the speed specified by the trace’s timestamps. We also consider different
accelerations of the original trace’s real-time behavior to challenge WhyEnf. We

18 F. Hublet et al.

Fig. 9. RQ2: Maximum latency of WhyEnf and event rate for the formulae in Figure 8.

measure WhyEnf’s latency ℓ and processing time t for each time-point. Latency
is the time delay between the emission of a time-point to WhyEnf and the
reception of the corresponding command, whereas processing time is the time
WhyEnf effectively takes to process the time-point. We report the average latency
(avgℓ(a)) and maximum latency (maxℓ(a)) given an acceleration a, as well as the
average processing time (avgt), and the maximum processing time (maxt) all
computed over the entire trace. If maxℓ(a) is smaller than the interval 1

a between
two timestamps in the accelerated trace, then the real-time condition (Section 3.1)
is met assuming that the SuS’s and communication latency are small enough.

All measurements were performed on a 2.4 GHz Intel i5-1135G7 CPU with 32
GB RAM. For each formula and acceleration a ∈ {105 · 20, . . . , 105 · 29}, we plot
maxℓ(a), the function 1

a (right y-axis), and the corresponding average event rate
avger(a) (left y-axis) in Figure 9. We include similar plots for WhyMon* and
EnfPoly and latency profiles for individual runs in our extended report [42].

As presented in Figure 9, for all formulae, WhyEnf meets the real-time
condition for all accelerations up to 4 · 105, which corresponds to a maximum
latency of 96 ms and an average event rate of 51 events/s. Hence, even though
the analyzed trace specifies time intervals in days, the real-time enforcement
of the same trace can in fact be performed for sub-second intervals. Note that
the average latency is much lower (20 ms for the most challenging policy), with
the maximum latency occurring when many events occur within a short time
span. The two formulae that only define future obligations, φlim and φdel, have
much lower maximum latency, of 14 and 19 ms, respectively, corresponding to
an average event rate of about 600 events/s. Due to proactivity, the enforcer
does not need to keep the history of past events for these formulae. Overall, our
experiments show that WhyEnf can efficiently enforce a real-world SuS.

RQ3: Comparison with the state of the art. We compare WhyEnf’s performance
to its two most closely related tools: WhyMon*, which provides similar expres-
siveness as WhyEnf but no enforcement, and EnfPoly [39], the only tool sup-
porting non-proactive enforcement of an MFOTL fragment. In addition to the
real-world log [24], we generate synthetic traces with n ∈ {100 · 20, . . . , 100 · 28}
time-points each containing k ∈ {20, . . . , 28} random events. We report avgt for
the three tools and six formulae in Figure 11, imposing a 10-minute timeout (t.o.).

Proactive Real-Time First-Order Enforcement 19

WhyEnf WhyMon* EnfPoly
Policy a avgℓ maxℓ avgt maxt avger a avgℓ maxℓ avgt maxt avger a avgℓ maxℓ avgt maxt avger
φlim 3.2e6 0.19 14 0.22 1.0 632 has unbounded future requires proactivity
φlaw 3.2e6 2.6 15 2.6 15 405 3.2e6 2.5 12 2.5 12 405 5.1e7 0.10 1.0 0.14 1.0 6479
φcon 4e5 20 96 20 96 51 8e5 9.3 51 9.3 52 101 5.1e7 0.10 1.0 0.14 1.0 6479
φinf 1.6e6 2.9 13 3.0 13 202 3.2e6 0.16 16 0.19 1.0 405 requires proactivity
φdel 3.2e6 0.19 19 0.22 1.0 632 1e5 42 434 42 434 13 requires proactivity
φsha 1.6e6 4.6 26 4.7 26 202 1e5 69 289 69 299 13 requires proactivity

Fig. 10. RQ2–3: Latency and processing time for the largest a such that maxℓ(a) ≤ 1/a.

WhyEnf WhyMon* EnfPoly
k = 10 n : 100 400 1.6e3 6.4e3 2.6e4 n : 100 400 1.6e3 6.4e3 2.6e4 n : 100 400 1.6e3 6.4e3 2.6e4

φlim .29 .28 .28 .30 .30 has unbounded future requires proactivity
φlaw .73 1.3 2.0 2.2 2.7 .26 .57 1.4 3.5 15 .16 .16 .16 .16 .16
φcon 1.8 4.9 9.1 11 12 .53 1.7 7.4 11 t.o. .19 .16 .18 .17 .17
φinf .78 1.0 1.2 1.1 1.2 .22 .31 .51 1.0 2.2 requires proactivity
φdel .17 .24 .26 .28 .56 .40 1.2 2.9 4.4 4.9 requires proactivity
φsha .86 2.3 5.3 7.6 7.0 .54 2.3 13 56 t.o. requires proactivity

n = 1000 k : 1 4 16 64 256 k : 1 4 16 64 256 k : 1 4 16 64 256

φlim .24 .24 .35 .83 4.7 has unbounded future requires proactivity
φlaw .61 1.2 2.2 2.9 6.1 .38 .71 1.3 1.6 2.3 .14 .19 .18 .22 .38
φcon 1.4 4.1 9.5 11.5 13.3 1.2 4.3 5.3 4.2 4.9 .14 .16 .16 .20 .32
φinf .48 .79 1.4 4.8 24 .21 .28 .44 .78 1.1 requires proactivity
φdel .23 .24 .32 .40 1.0 .44 1.1 3.0 4.8 6.3 requires proactivity
φsha .78 3.2 7.4 7.1 12 1.2 4.3 9.7 14 16 requires proactivity

Fig. 11. RQ3: Average processing time (ms) for different trace and time-point sizes.

WhyMon* cannot monitor φlim, as the formula has an unbounded ♢ opera-
tor. For all other formulae, WhyMon* satisfies the real-time condition for accel-
erations a ≤ 105. WhyEnf’s latency is at most twice WhyMon*’s for φlaw and
φcon as the enforcer calls the monitor at least once per iteration and also per-
forms fixed-point computations (Figure 10). In contrast, WhyEnf can enforce
φlim and has significantly (up to 22 times) lower latency for φinf , φsha, and φdel.
Unlike WhyMon*, WhyEnf is able to lazily evaluate implications involving fu-
ture obligations, which improves its runtime performance. WhyEnf’s processing
time also scales better than WhyMon*’s for large values of n and k (Figure 11).

Only φlaw and φcon are transparently enforceable without proactivity. We
enforce them using EnfPoly after manually rewriting them into equivalent
formulae in EnfPoly’s fragment. WhyEnf’s average and maximum latencies are
higher than EnfPoly’s, but WhyEnf’s algorithm covers a much larger fragment
of MFOTL than EnfPoly, which makes computating verdicts more costly. The
same behavior is observed in terms of average processing time (Figure 11).

7 Related Work

Security automata [26, 58] were first used for enforcement by terminating the
SuS. Fredrikson et al. [31] also terminate the SuS upon violation detection, but
use symbolic automata which allow policies to refer to the SuS’s state. Bauer et
al. [21] investigate enforcers that can cause and suppress events, as do Ligatti
et al. [47], who use edit automata with the ability to buffer events. Ngo et
al. [51] study policy enforcement for reactive systems for which they disallow
the enforcer to buffer events or inspect SuS code. Basin et al. [15] distinguish

20 F. Hublet et al.

between suppressable and only-observable events, without considering causation.
More complex bidirectional enforcement [3, 4] and enforcement through delaying
events [27, 54] have also been proposed. Pinisetty et al. [55] further allow the
enforcer to inspect the SuS’s code to perform predictive enforcement.

Most runtime enforcement approaches (and tools [28,29]) rely on automata as
policies. Metric interval temporal logic formulae can be enforced via translation
to timed automata [53,57]. Basin et al. [11,12] use dynamic condition response
graphs [36] to formalize and enforce obligations in real time by suppressing and
(proactively) causing events. Finally, controller synthesis tools for LTL [25,44,60],
Timed CTL [22,52], or MTL [38,46] can generate enforcement mechanisms.

To the best of our knowledge, only a few approaches enforce first-order
temporal policies. Hallé and Villemaire [33,34] develop a monitor for LTL-FO+,
a first-order variant of future-only linear temporal logic. They use the monitor to
block the system in case of detected policy violations, in the spirit of the work on
security automata [26,58]. Hublet et al. [39–41] developed the EnfPoly tool that
enforces policies from a fragment of MFOTL that can contain future operators,
but only nested with past ones such that the formula overall does not refer to the
future. Independently, Aceto et al. [2–5] consider the safety fragment of Hennessy-
Milner Logic (HML) with recursion as their policy language. They generalize HML
to allow quantification over event parameters, but do not support time constraints.
They also focus on instrumentation scenarios where all events are suppressable.

A satisfiability checking tool [30] and many runtime monitoring tools sup-
port (different fragments of) MFOTL [23], including MonPoly [13, 17–19], Veri-
Mon [9,10,59] and DejaVu [35]. Lima et al. [48] recently introduced Explana-
tor2, an MTL monitor that outputs explanations. They later extended their
work to MFOTL with the WhyMon tool [49], upon which our enforcer relies.
WhyMon supports a large fragment of MFOTL as it uses partitioned decision
trees to represent variable assignments. To the best of our knowledge, all existing
monitoring tools only support safety formulae of the form □φ. Our work addi-
tionally supports (non-transparent) enforcement of some non-safety formulae.

8 Conclusion

We have presented the first proactive real-time enforcement algorithm and an
efficient tool, WhyEnf, for metric first-order temporal logic. Our approach lends
itself to a number of extensions. For instance, WhyMon’s runtime performance
can be optimized for large formulae. Features like complex data types [50],
let bindings [61], and aggregations [16] would further improve our enforcer’s
expressiveness. Finally, refinements of the type system when the same event can
be both caused and suppressed in different contexts would be a useful addition.

Acknowledgement. Hublet is supported by the Swiss National Science Foun-
dation grant "Model-driven Security & Privacy" (204796). Lima and Traytel are
supported by a Novo Nordisk Fonden start package grant (NNF20OC0063462).
We thank the anonymous reviewers for their insightful feedback.

Proactive Real-Time First-Order Enforcement 21

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D. (eds.) 16th
International Colloquium on Automata, Languages and Programming (ICALP).
LNCS, vol. 372, pp. 1–17. Springer (1989). https://doi.org/10.1007/BFB0035748

2. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement
via suppressions. In: 29th International Conference on Concurrency Theory (2018)

3. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On bidirectional runtime
enforcement. In: International Conference on Formal Techniques for Distributed
Objects, Components, and Systems. pp. 3–21. Springer (2021)

4. Aceto, L., Cassar, I., Francalanza, A., Ingolfsdottir, A.: Bidirectional runtime
enforcement of first-order branching-time properties. Logical Methods in Computer
Science 19 (2023)

5. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On first-order runtime
enforcement of branching-time properties. Acta Informatica pp. 1–67 (2023)

6. Alpern, B., Schneider, F.B.: Defining liveness. Information processing letters 21(4),
181–185 (1985)

7. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: European Symposium
on Research in Computer Security. pp. 681–699. Springer (2019)

8. Bartocci, E., Falcone, Y.: Lectures on runtime verification. Springer (2018)
9. Basin, D., Dardinier, T., Hauser, N., Heimes, L., Huerta y Munive, J., Kaletsch, N.,

Krstić, S., Marsicano, E., Raszyk, M., Schneider, J., Tirore, D.L., Traytel, D., Zingg,
S.: VeriMon: A formally verified monitoring tool. In: Seidl, H., Liu, Z., Pasareanu,
C.S. (eds.) 19th International Colloquium on Theoretical Aspects of Computing
(ICTAC). LNCS, vol. 13572, pp. 1–6. Springer (2022)

10. Basin, D., Dardinier, T., Heimes, L., Krstić, S., Raszyk, M., Schneider, J., Traytel,
D.: A formally verified, optimized monitor for metric first-order dynamic logic. In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) 10th International Joint Conference on
Automated Reasoning, (IJCAR). LNCS, vol. 12166, pp. 432–453. Springer (2020)

11. Basin, D., Debois, S., Hildebrandt, T.T.: In the nick of time: Proactive prevention
of obligation violations. In: 29th Computer Security Foundations Symposium (CSF).
pp. 120–134. IEEE (2016)

12. Basin, D., Debois, S., Hildebrandt, T.: Proactive enforcement of provisions and
obligations. Journal of Computer Security To appear

13. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MonPoly: Monitoring usage-
control policies. In: 2nd International Conference on Runtime Verification, (RV).
pp. 360–364. Springer (2012)

14. Basin, D., Harvan, M., Klaedtke, F., Zalinescu, E.: Monitoring data usage in
distributed systems. IEEE Trans. on Software Engineering 39(10), 1403–1426 (2013)

15. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies
revisited. ACM Trans. Inf. Syst. Secur. 16(1), 1–26 (2013)

16. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Methods Syst. Des. 46, 262–285 (2015)

17. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric
first-order temporal properties. In: IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2008)

18. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. Journal of the ACM (JACM) 62(2), 1–45 (2015)

https://doi.org/10.1007/BFB0035748

22 F. Hublet et al.

19. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. RV-CuBES
3, 19–28 (2017)

20. Basin, D., Krstić, S., Schneider, J., Traytel, D.: Correct and efficient policy monitor-
ing, a retrospective. In: 21st International Symposium on Automated Technology
for Verification and Analysis (ATVA). pp. 3–30. Springer (2023)

21. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Workshop
on Foundations of Computer Security (FCS). Citeseer (2002)

22. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: UPPAAL-
Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) International
Conference Computer Aided Verification (CAV). LNCS, vol. 4590, pp. 121–125.
Springer (2007)

23. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. on Database Systems (TODS) 20(2), 149–186 (1995)

24. Debois, S., Slaats, T.: The analysis of a real life declarative process. In: 2015 IEEE
Symposium Series on Computational Intelligence. pp. 1374–1382. IEEE (2015)

25. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). LNCS, vol. 6605, pp. 272–275. Springer (2011)

26. Erlingsson, Ú., Schneider, F.: SASI enforcement of security policies: a retrospective.
In: Kienzle, D., Zurko, M.E., Greenwald, S., Serbau, C. (eds.) Workshop on New
Security Paradigms. pp. 87–95. ACM (1999)

27. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of reg-
ular timed properties by suppressing and delaying events. Science of Computer
Programming 123, 2–41 (2016)

28. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021)

29. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In:
Finkbeiner, B., Mariani, L. (eds.) 19th International Conference on Runtime Verifi-
cation, (RV). LNCS, vol. 11757, pp. 48–69. Springer (2019)

30. Feng, N., Marsso, L., Sabetzadeh, M., Chechik, M.: Early verification of legal
compliance via bounded satisfiability checking. In: Enea, C., Lal, A. (eds.) CAV
2023. LNCS, vol. 13966, pp. 374–396. Springer (2023)

31. Fredrikson, M., Joiner, R., Jha, S., Reps, T.W., Porras, P.A., Saïdi, H., Yegneswaran,
V.: Efficient runtime policy enforcement using counterexample-guided abstraction
refinement. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 548–563. Springer (2012)

32. Gomaa, H.: Software modeling and design: UML, use cases, patterns, and software
architectures. Cambridge University Press (2011)

33. Hallé, S., Villemaire, R.: Browser-based enforcement of interface contracts in web
applications with beepbeep. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 648–653. Springer (2009)

34. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

35. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with bdds.
Formal Methods Syst. Des. 56(1-3), 1–21 (2020)

36. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. The Journal
of Logic and Algebraic Programming 82(5-7), 164–185 (2013)

37. Hilty, M., Basin, D., Pretschner, A.: On obligations. In: Computer Security–
ESORICS 2005: 10th European Symposium on Research in Computer Security,
Milan, Italy, September 12-14, 2005. Proceedings 10. pp. 98–117. Springer (2005)

Proactive Real-Time First-Order Enforcement 23

38. Hofmann, T., Schupp, S.: TACoS: A tool for MTL controller synthesis. In: Calinescu,
R., Pasareanu, C.S. (eds.) International Conference on Software Engineering and
Formal Methods (SEFM). LNCS, vol. 13085, pp. 372–379. Springer (2021)

39. Hublet, F., Basin, D., Krstić, S.: Real-time policy enforcement with metric first-
order temporal logic. In: European Symposium on Research in Computer Security.
pp. 211–232. Springer (2022)

40. Hublet, F., Basin, D., Krstić, S.: Enforcing the GDPR. In: Tsudik, G., Conti, M.,
Liang, K., Smaragdakis, G. (eds.) Computer Security – ESORICS 2023. LNCS, vol.
14344. Springer (2023)

41. Hublet, F., Basin, D., Krstić, S.: User-controlled privacy: Taint, track, and control.
Proc. Priv. Enhancing Technol. 2024(1), 597–616 (2024)

42. Hublet, F., Lima, L., Basin, D., Krstić, S., Traytel, D.: Proactive real-
time first-order enforcement (extended report) (2024), https://github.com/
runtime-enforcement/whyenf/blob/main/docs/cav24-extended.pdf

43. Hublet, F., Lima, L., Basin, D., Krstić, S., Traytel, D.: WhyEnf (2024), https:
//github.com/runtime-enforcement/whyenf

44. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: International
Conference Formal Methods in Computer-Aided Design (FMCAD). pp. 117–124.
IEEE (2006)

45. Krstić, S., Schneider, J.: A benchmark generator for online first-order monitoring.
In: Runtime Verification: 20th International Conference, RV 2020, Los Angeles, CA,
USA, October 6–9, 2020, Proceedings 20. pp. 482–494. Springer (2020)

46. Li, G., Jensen, P., Larsen, K., Legay, A., Poulsen, D.: Practical controller synthesis
for MTL0,∞. In: Erdogmus, H., Havelund, K. (eds.) ACM SIGSOFT International
SPIN Symposium on Model Checking of Software. pp. 102–111. ACM (2017)

47. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-
time security policies. International Journal of Information Security 4, 2–16 (2005)

48. Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: Explainable online
monitoring of metric temporal logic. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). pp. 473–491.
Springer (2023)

49. Lima, L., Huerta y Munive, J.J., Traytel, D.: Explainable online monitoring of metric
first-order temporal logic. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 288–307. Springer (2024)

50. Lima Graf, J., Krstić, S., Schneider, J.: Metric first-order temporal logic with
complex data types. In: International Conference on Runtime Verification. pp. 126–
147. Springer (2023)

51. Ngo, M., Massacci, F., Milushev, D., Piessens, F.: Runtime enforcement of security
policies on black box reactive programs. In: Rajamani, S.K., Walker, D. (eds.) 42nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). pp. 43–54. ACM (2015)

52. Peter, H., Ehlers, R., Mattmüller, R.: Synthia: Verification and synthesis for timed
automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) International Conference on
Computer Aided Verification (CAV). LNCS, vol. 6806, pp. 649–655. Springer (2011)

53. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: TiPEX: A tool chain for timed
property enforcement during execution. In: International Conference on Runtime
Verification (RV). pp. 306–320. Springer (2015)

54. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena Timo, O.:
Runtime enforcement of timed properties revisited. Formal Methods Syst. Des. 45,
381–422 (2014)

https://github.com/runtime-enforcement/whyenf/blob/main/docs/cav24-extended.pdf
https://github.com/runtime-enforcement/whyenf/blob/main/docs/cav24-extended.pdf
https://github.com/runtime-enforcement/whyenf
https://github.com/runtime-enforcement/whyenf

24 F. Hublet et al.

55. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.:
Predictive runtime enforcement. Formal Methods Syst. Des. 51(1), 154–199 (2017)

56. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: 16th ACM
Symposium on Principles of Programming Languages (POPL). pp. 179–190. ACM
Press (1989)

57. Renard, M., Rollet, A., Falcone, Y.: GREP: games for the runtime enforcement
of properties. In: Yevtushenko, N., Cavalli, A., Yenigün, H. (eds.) International
Conference on Testing Software and Systems (ICTSS). LNCS, vol. 10533, pp. 259–
275. Springer (2017)

58. Schneider, F.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–
50 (2000)

59. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for metric
first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) 19th International
Conference on Runtime Verification. LNCS, vol. 11757, pp. 310–328. Springer (2019)

60. Zhu, S., Tabajara, L., Li, J., Pu, G., Vardi, M.: A symbolic approach to safety LTL
synthesis. In: Strichman, O., Tzoref-Brill, R. (eds.) International Haifa Verification
Conference (HVC). LNCS, vol. 10629, pp. 147–162. Springer (2017)

61. Zingg, S., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: Verified first-order mon-
itoring with recursive rules. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 236–253. Springer (2022)

	Proactive Real-Time First-Order Enforcement

