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Abstract. Modern software systems must comply with increasingly com-
plex regulations in domains ranging from industrial automation to data
protection. Runtime enforcement addresses this challenge by empowering
systems to not only observe, but also actively control, the behavior of
target systems by modifying their actions to ensure policy compliance.
We propose a novel approach to the proactive real-time enforcement of
policies expressed in metric first-order temporal logic (MFOTL). We in-
troduce a new system model, define an expressive MFOTL fragment that
is enforceable in that model, and develop a sound enforcement algorithm
for this fragment. We implement this algorithm in a tool called WhyEnf
and carry out a case study on enforcing GDPR-related policies. Our tool
can enforce all policies from the study in real-time with modest overhead.
Our work thus provides the first tool-supported approach that can proac-
tively enforce expressive first-order policies in real time.
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1 Introduction

As modern software systems become increasingly complex, they are required to
comply with a myriad of growingly intricate regulations. The ability to monitor
and control such systems is an important, technically challenging task.

Runtime enforcement [58] tackles this problem by observing and controlling a
target system under scrutiny (SuS), so that its actions, possibly modified, comply
with a given policy. Runtime enforcement is performed by a component called
enforcer, which observes the SuS and influences its behavior as permitted by the
system model, e.g., by suppressing or causing SuS actions. Enforcement is thus
an inherently online problem performed during the SuS’s execution. When time
constraints are involved, enforcement is called real-time. This is a more difficult
problem than runtime monitoring [8], where the SuS is only observed and policy
violations are reported, but not prevented. Applications of runtime enforcement
are manifold, ranging from safety protocols in industrial automation to regulatory
compliance and it is closely related to the problem of controller synthesis [1, 56].

Policies can be decomposed into provisions and obligations [37]. Compliance
with provisions depends on past and present SuS behavior, and it is sufficient
for an enforcer to react to the current SuS action. Compliance with obligations,

https://doi.org/10.5281/zenodo.10947830


2 F. Hublet et al.

on the other hand, depends on future SuS behavior, requiring the enforcer to
account for this behavior and proactively act [11] to prevent violations.

In existing approaches to proactive runtime enforcement [11], policies are
typically propositional: they regard every system action as either true or false.
In practice, however, actions are often parameterized with data values coming
from an infinite domain, like strings or integers, and first-order policies are used
to formulate dependencies between such actions’ parameters. To the best of our
knowledge, no previous work supports proactive enforcement of first-order policies:
Hublet et al.’s [39] enforcement is real-time, but not proactive; Aceto et al. [5]
similarly support only the reactive runtime enforcement of first-order provisions.

In this paper, we propose an approach for proactively enforcing metric first-
order temporal logic (MFOTL) [18] policies. Our approach features a realistic sys-
tem model that supports proactive real-time enforcement in the nick of time [11,
12], i.e., the enforcer can act at least once per clock tick. Our model includes caus-
able, suppressable, and only-observable SuS actions. Due to its proactivity, our
enforcer supports an expressive MFOTL fragment with past and future operators.

Our enforcer is sound (modified SuS behavior complies with a given policy) for
an enforceable MFOTL fragment (EMFOTL), and transparent (if SuS behavior is
already policy-compliant, then it is not modified) for a fragment of EMFOTL. Our
enforcer relies on the runtime monitoring tool WhyMon [49] as a backend. After
reviewing MFOTL and WhyMon (Section 2) we describe our approach and eval-
uate the associated implementation. Our work makes the following contributions:
– We introduce a new system model for the proactive real-time enforcement of

metric first-order policies (Section 3).
– We present an enforceable MFOTL fragment (called EMFOTL) with past

and future operators that we characterize using a type system (Section 4).
– We develop an enforcement algorithm for EMFOTL and prove its soundness.

We also prove its transparency for a fragment of EMFOTL (Section 5).
– We implement the type system and the algorithm into a new tool, called

WhyEnf. We carry out a case study on monitoring core GDPR provisions [7],
using WhyEnf to enforce the monitored policies. We find that WhyEnf
can seamlessly enforce all monitorable policies from this case study in real
time with modest runtime overhead (Section 6).
To our knowledge, WhyEnf (available at [43]) is the first proactive first-order

policy enforcer (Section 7). All proofs can be found in Appendix B.

2 Preliminaries

We introduce traces that model system executions, metric-first order temporal
logic (MFOTL), and WhyMon, a monitor for an expressive MFOTL fragment.

Let x, y, z ∈ V be variables and c, d ∈ D be values from an infinite domain D
of constant symbols, like integers or strings. Terms t ∈ V ∪D are either variables
or constants. Finite sequences of terms t1, . . . , tn are written as t. Let E denote a
finite set of event names, and the function ι : E→ N map event names to arities.
An event is a pair (e, (d1, . . . , dι(e))) ∈ E × Dι(e) of an event name e and ι(e)
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arguments. We fix a signature Σ = (D,E, ι) and define the set DB of databases
over Σ as P({(e, d) | e ∈ E, d ∈ Dι(e)}). The subset of all databases with event
names in E ⊆ E is DB(E) := {D ∈ DB | ∀(e, (d1, . . . , dι(e))) ∈ D. e ∈ E}.

Example 1. Consider a system logging GDPR-relevant events defined with the
signature Σ0 = (N,E0, ι0), where E0 = {use, consent, delete, deletion_request,
legal_ground}, ι0(use) = ι0(delete) = ι0(deletion_request) = 3, and ι0(consent) =
ι0(legal_ground) = 2. The events’ denotations are: use(c, d, u) means ‘system uses
user u’s data d from category c’, delete(c, d, u)means ‘user u’s data d from category
c is deleted’, deletion_request(c, d, u) means ‘user u requests deletion of data d
from category c’, consent(u, c) means ‘user u provides consent for category c’, and
legal_ground(u, d) means ‘legal ground was claimed to process user u’s data d’.

A trace σ is a sequence 〈(τi, Di)〉0≤i≤k , k ∈ N ∪ {∞} of timestamps τi ∈ N and
finite databases Di ∈ DB, where timestamps grow monotonically (∀i < |σ|. τi ≤
τi+1) and progress (if |σ| = ∞, then ∀τ. ∃i. τ < τi). An index 0 ≤ i < |σ|, in a
trace σ is called a time-point. The empty trace is denoted by ε, the set of all traces
by T, and the set of finite (resp. infinite) traces by Tf (resp. Tω). For traces σ ∈ Tf
and σ′ ∈ T, σ · σ′ denotes their concatenation. A property is a subset P ⊆ Tω.

Example 2. Consider two infinite traces of a data management system

σ1=(10, {consent(1, 1), consent(1, 2)), (50, {use(1, 3, 1), use(2, 1, 1)}), . . .
σ2=(10, {deletion_request(2, 1, 1)}), (50, {use(1, 3, 1)}), . . .

In σ1, user 1 provides consent for categories 1 and 2 at time-point 0 with timestamp
10; at time-point 1 with timestamp 50, the system uses user 1’s data 3 (with
category 1) and user 1’s data 1 (with category 2). In σ2, user 1 requests deletion
of data 1 with category 2, and then the system uses data 3 with category 1.

MFOTL formulae are defined by the following grammar

ϕ ::= > | e(t) | ¬ϕ | ϕ ∧ ϕ | ∃x. ϕ | #I ϕ |  I ϕ | ϕ UI ϕ | ϕ SI ϕ,

where e ∈ E, x ∈ V, and I ∈ I ranges over non-empty intervals in N. We use the
standard abbreviations ⊥ := ¬>, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ→ ψ := ¬ϕ ∨ ψ, ϕ↔
ψ := (ϕ→ ψ)∧(ψ → ϕ), ∀x. ϕ := ¬(∃x. ¬ϕ), ♦I ϕ := >UIϕ (eventually), �I ϕ :=
> SI ϕ (once), �I ϕ := ¬♦I ¬ϕ (always), and �I ϕ := ¬�I ¬ϕ (historically). A
polarity p ∈ {+,−} acts upon a formula ϕ by +ϕ := ϕ and −ϕ := ¬ϕ. We omit in-
tervals of the form [0,∞) from the temporal operators’ subscript. We write ϕ[d/x]
for the formula resulting from substituting the free variable x with the constant d
in the formula ϕ. The notation ϕ[v] generalizes such a unary substitution to apply-
ing a full valuation v : V→ D, i.e., a mapping from variables to domain values.

Example 3. Suppose that the time unit is days. Consider the formulae

ϕlaw ≡ � (∀c, d, u. use (c, d, u)→ � (consent (u, c) ∨ legal_grounds (u, d)))

ϕdel ≡ �
(
∀c, d, u. deletion_request (c, d, u)→ ♦[0,30] delete (c, d, u)

)
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v, i � e(t) iff (e, J t Kv) ∈ Di v, i � >
v, i � ∃x. ϕ iff v[x 7→ d], i � ϕ for some d ∈ D v, i � ¬ϕ iff v, i 6� ϕ
v, i � #I ϕ iff v, i+ 1 � ϕ and τi+1 − τi ∈ I v, i � ϕ ∧ ψ iff v, i � ϕ and v, i � ψ
v, i �  I ϕ iff i > 0 and v, i− 1 � ϕ and τi − τi−1 ∈ I
v, i � ϕ UI ψ iff v, j � ψ for some j ≥ i with τj − τi ∈ I and v, k � ϕ for all i ≤ k < j
v, i � ϕ SI ψ iff v, j � ψ for some j ≤ i with τi − τj ∈ I and v, k � ϕ for all j < k ≤ i

Fig. 1. MFOTL semantics for a fixed, infinite trace σ

The formula ϕlaw formalizes lawfulness of processing : ‘whenever data d with cat-
egory c belonging to user u is processed, then either u has consented to her data
with category c being used, or the controller has claimed a legal ground to process
d.’ The formula ϕdel formalizes the GDPR’s right to erasure: ‘whenever a user u re-
quests the deletion of data d of category c, then d must be deleted within 30 days’.

We write fv(ϕ) and cs(ϕ) for the set of free variables and constants of a formula
ϕ, respectively. We define the active domain ADi(ϕ) of a formula ϕ at time-
point i as cs(ϕ) ∪

(⋃
j≤i{d | d is one of dk in e(d1, . . . , dι(e)) ∈ Dj}

)
. The active

domain of ϕ at i contains all constants occurring in ϕ together with all constants
occurring as event arguments in the trace up to time-point i.

Example 4. As cs(ϕlaw) = cs(ϕdel) = ∅, we have AD0(ϕlaw) = AD0(ϕdel) = {1, 2}
and AD1(ϕlaw)=AD1(ϕdel)={1, 2, 3} for σ1.

MFOTL’s semantics (Figure 1) is defined over infinite traces. Given a valu-
ation v, we define the interpretation of terms as Jx Kv = v(x) (for variables) and
J c Kv = c (for constants). We lift this operation straightforwardly to lists of terms.
A valuation update is denoted as v[d/x]. Each sequent v, i �σ ϕ denotes that ϕ is
satisfied at time-point i of trace σ under valuation v. We omit σ whenever it is clear
from the context. The language of a formula ϕ is L(ϕ) = {σ ∈ Tω | ∃v. v, 0 �σ ϕ}.

Lima et al. [49] present an algorithm and a tool, called WhyMon, that can
monitor an expressive safety fragment of MFOTL both online and offline. This
fragment contains all formulae with future-bounded until operators. Thus, it
strictly extends the fragments supported by other tools like MonPoly [13] and
VeriMon [9], which only support formulas in relational algebra normal form [20],
and DejaVu [35], which is restricted to past temporal operators.

Abstractly, WhyMon implements a function Sat(v, ϕ, i) = v, i � ϕ that
checks if a valuation satisfies the formula ϕ on a (fixed) trace σ at time-point i.
Internally, it manipulates objects representing proofs of ϕ’s subformulae. This
technique additionally allows WhyMon to output explanations [48] of its verdicts
(satisfactions or violations) in the form of proofs that can be checked using
a proof checker. An example proof that σ2 does not satisfy ϕdel is provided
in Appendix A. We refer to Lima et al.’s work [49] for further details.
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1.1: set of events D

1.2: R-command RCom(DC, DS)

2: P-command PCom(DC)

policyP

time τ

Fig. 2. System model for proactive real-time first-order enforcement

3 Proactive, Real-Time, First-Order Enforcement

Our system model (Section 3.1) is inspired by Basin et al.’s model for proactive
propositional enforcement [11,12] and Hublet et al.’s model for (non-proactive)
first-order enforcement [39]. Within this model, we define enforcers (Section 3.2).

3.1 System model

Figure 2 shows a system S supervised by an enforcer E described using a com-
munication diagram [32]. The system S interacts with an environment X that
E cannot control. The enforcer E must ensure that the sequence of actions ex-
ecuted by S complies with a given policy P . To this end, S reports to E sets
of events (from E) that capture the system’s observable actions. The enforcer
E can send commands to S, whereby it instructs S to cause or suppress the ac-
tions corresponding to specific events. There are two kinds of such commands, R-
commands and P-commands, which will be described below. We assume that the
set of events is partitioned into a set of causable events C capturing actions that
E can instruct S to cause, a set of suppressable events S capturing actions that
E can instruct S to suppress, and a set of only-observable events O = E \ (S∪C)
capturing actions that can be neither caused nor suppressed.

Example 5. Suppose that the system from Example 1 can be instrumented so
that an enforcer can (observe and) prevent data usage and cause data deletion,
but can only observe the remaining actions. The corresponding event sets are
then C={delete}, S={use}, and O={consent, legal_ground, deletion_request}.

More specifically, we assume that E interacts with S in three modes: (1) Before
performing any suppressable actions, S sends the corresponding set of (suppress-
able) events D ∈ DB to E. The enforcer inspects D and reactively responds with
an R-command RCom(DC, DS), where DC ∈ DB(C) is a set of causable events and
D ⊇ DS ∈ DB(S) is a set of suppressable events. S then performs the actions cor-
responding to the events in (D \DS)∪DC, i.e., all actions corresponding to events
in DC (resp. DS) are caused (resp. suppressed). (2) After performing actions that
are not suppressable, S sends the corresponding set of events D ∈ DB to E. The
enforcer inspects D and responds with an R-command RCom(DC, ∅). As no sup-
pressable actions are to be performed and the events are sent after the actions, the
enforcer can only instruct S to cause actions, but not to suppress them. (3) Before
any clock tick (‘in the nick of time’ [12]), E can proactively send a P-command
PCom(DC) with DC ∈ DB(C) to S. The system S then performs the actions cor-
responding to the events in DC. Note that sending a P-command before a tick is
always possible, but the enforcer may instead choose not to send any command.
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These modes of interaction cover different enforcement scenarios. In mode
(1), E reacts to suppressable events by possibly suppressing or causing events.
E.g., the formula ϕlaw from Example 3 can be enforced by suppressing data us-
age (the use events) if no appropriate event has previously occurred. In mode
(2), E reacts to only-observable events (e.g., the consent events) by possibly caus-
ing events corresponding to corrective actions after the executed action. Finally,
mode (3) enforces policies by causing events at times when the SuS does not, on
its own, send any observable events. This is the case, e.g., when enforcing ϕdel

on σ2: data 1 with category 2 must be deleted between timestamps 10 and 40.

Discussion. Assume that the enforcer E can ensure that the sequence of actions
it observes complies with P . When does this guarantee that the system actually
complies with P? Basin et al. [12] state two conditions for achieving soundness:
(a) the system and enforcer must be synchronized and (b) the enforcer must be
fast enough to keep up with the real-time system behavior. These conditions also
apply in our model. Condition (a) ensures that the order of events observed by
E reflect the order of S’s actions. Condition (b) ensures that the timestamps
of events reflect the time at which the corresponding actions are performed by
S. The interval t between two clock ticks must satisfy the real-time condition
t > δS + 2δS↔E + δE , where δS is the worst-case time needed by S to create
events before performing observable actions and process the enforcer’s reactions,
δS↔E is the worst-case communication time between S and E, and δE is the
worst-case latency of the enforcer. Threats to the model’s validity may thus stem
from high communication time, or poor SuS or enforcer performance.

3.2 Enforcers

An enforcer reads the consecutive prefixes of an SuS’s trace and returns commands:

Definition 1. A command is any element of the form RCom(DC, DS) (‘R-
command’), PCom(DC) (‘P-command’), or NoCom (‘no command’), where DC ∈
DB(C) and DS ∈ DB(S). The set of commands is denoted by C.

Definition 2. An enforcer E is a triple (S, s0, µ), where S is a set of states,
s0 ∈ S is an initial state, and µ : Tf × S × (N ∪ {⊥})→ C × S is a computable
update function such that the following two conditions hold:

∀σ, τ,D, s. ∃DC, DS, s
′. µ(σ · (τ,D), s,⊥) = (RCom(DC, DS), s

′) ∧DS ⊆ D
∀σ, s, τ ∈ N. ∃DC, s

′. µ(σ, s, τ) ∈ {(PCom(DC), s
′), (NoCom, s′)}.

If µ’s third argument is ⊥, then µ returns an R-command. The set of events to
be suppressed contained in this command is a subset of the last set of events
reported by the SuS. On the other hand, if µ’s third argument is an integer
timestamp, then µ returns either a P-command for the corresponding timestamp,
or no command. Any enforcer induces the following trace transduction:

Definition 3. For any σ ∈ T and enforcer E = (S, s0, µ), the enforced trace E(σ)
is defined co-recursively in Algorithm 1, where fts(σ) is the first timestamp in σ.



Proactive Real-Time First-Order Enforcement 7

1: run(s, σ, σ′, τ) = case σ′ of
2: | ε⇒ ε
3: | (τ ′, D) · σ′′ when τ ′ > τ ⇒ let (o, s′) = µ(σ, s, τ) in
4: case o of | PCom(DC)⇒ (τ,DC) · run(s′, σ · (τ,DC), σ′, τ + 1)
5: | NoCom⇒ run(s′, σ, σ′, τ + 1)
6: | (τ ′, D) ·σ′′ when τ ′ = τ ⇒ let (o, s′) = µ(σ ·(τ ′, D), s,⊥);D′ = (D\DS)∪DC) in
7: case o of | RCom(DC , DS)⇒ (τ ′, D′) · run(s′, σ · (τ ′, D′), σ′′, τ + 1)
8: E(σ) = run(s0, ε, σ, if σ = ε then 0 else fts(σ))

Algorithm 1: Enforced trace

Algorithm 1 formalizes the interaction described in Section 3.1: the enforcer is
called once at every time-point in the input trace σ to generate a reactive command
(lines 6–7), and once before each clock tick to (possibly) generate a proactive
command (lines 3–5). The generated commands are executed sequentially to
produce the enforced trace E(σ), which thus reflects the actions performed by
the SuS when composed with the enforcer as in Section 3.1.

To be considered correct with respect to a given property P , enforcers are typ-
ically required to fulfill two properties: soundness and transparency [47]. Sound-
ness states that any trace modified by the enforcer must be compliant with P ,
while transparency states that the enforcer does not alter a trace that already
complies with the policy. A transparent enforcer modifies the system’s behavior
only when necessary. The following definition formalizes these notions.

Definition 4. An enforcer E is sound with respect to a property P iff for any
σ ∈ Tω, we have E(σ) ∈ P . An enforcer E = (S, s0, µ) is transparent with respect
to a property P iff for all σ ∈ P , E(σ) = σ. A property P (resp. a formula ϕ) is
enforceable iff there exists a sound enforcer with respect to P (resp. L(ϕ)).

4 Enforceable MFOTL Formulae

In this section, we present EMFOTL, an expressive and enforceable fragment of
MFOTL. An enforcer for EMFOTL formulae will be presented in Section 5.

EMFOTL is defined using the typing rules in Figure 3. These consist of
sequents of the form Γ ` ϕ : α, reading ‘ϕ types to α under Γ ’. Here, context
Γ : E→ {C,S} is a mapping from event names to either of the symbols C or S,
ϕ is an MFOTL formula, and α is a type in {C,S}. The type names C and S
overload the names of the sets of suppressable and causable events in a natural
way: any event ec(t) with ec ∈ C (resp. es ∈ S) has type C (resp. S) under the
context {ec 7→ C} (resp. {es 7→ S}). EMFOTL is defined as the set of all ϕ for
which ∃Γ. Γ ` ϕ : C. Intuitively, a formula types to C under Γ (‘ϕ is causable
under Γ ’) if it can be enforced by causing events ec(t) such that Γ (ec) = C
and suppressing events es(t) such that Γ (es) = S. It types to S under Γ (‘ϕ is
suppressable under Γ ’) if ¬ϕ can be enforced under the same conditions on Γ .

We now review the typing rules presented in Figure 3. Our approach for
enforcing temporal operators is illustrated in Figure 4.
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` e(. . . , x, . . . ) : PG(x)+
E+

PG
` ϕ : PG(x)¬p

` ¬ϕ : PG(x)p
¬PG

x 6= z ` ϕ : PG(z)p

` ∃x. ϕ : PG(z)p
∃PG

` ϕ : PG(x)+

` ϕ ∧ ψ : PG(x)+
∧L+

PG

` ψ : PG(x)+

` ϕ ∧ ψ : PG(x)+
∧R+

PG

` ϕ : PG(x)− ` ψ : PG(x)−

` ϕ ∧ ψ : PG(x)−
∧−PG

0 /∈ I ` ϕ : PG(x)+

` ϕ SI ψ : PG(x)+
SL+
PG

` ψ : PG(x)+

` ϕ SI ψ : PG(x)+
SR+
PG

0 ∈ I ` ψ : PG(x)−

` ϕ SI ψ : PG(x)−
S−PG

0 /∈ I ` ϕ : PG(x)+

` ϕ UI ψ : PG(x)+
UL+

PG

` ϕ : PG(x)+ ` ψ : PG(x)+

` ϕ UI ψ : PG(x)+
ULR+

PG

Past-guardedness
0 ∈ I ` ψ : PG(x)−

` ϕ UI ψ : PG(x)−
U−PG

` ϕ : PG(x)+

`  I ϕ : PG(x)+
 +

PG

Γ ` > : C >
C

Γ ` ⊥ : S ⊥
S

e ∈ C Γ (e) = C
Γ ` e(t1, . . . , tk) : C EC

e ∈ S Γ (e) = S
Γ ` e(t1, . . . , tk) : S ES

Γ ` ϕ : S
Γ ` ¬ϕ : C ¬

C
Γ ` ϕ : C
Γ ` ¬ϕ : S ¬

S
Γ ` ϕ : C

Γ ` ∃x. ϕ : C ∃
C

Γ ` ϕ : S ` ϕ : PG(x)+

Γ ` ∃x. ϕ : S ∃S

Γ ` ϕ : C Γ ` ψ : C
Γ ` ϕ ∧ ψ : C ∧C

Γ ` ϕ : S
Γ ` ϕ ∧ ψ : S ∧

SL
Γ ` ψ : S

Γ ` ϕ ∧ ψ : S ∧
SR

0 ∈ I Γ ` ψ : C
Γ ` ϕ SI ψ : C SC

0 /∈ I Γ ` ϕ : S
Γ ` ϕ SI ψ : S SSL

0 ∈ I Γ ` ϕ : S Γ ` ψ : S
Γ ` ϕ SI ψ : S SSLR

Γ ` ψ : S
Γ ` ϕ UI ψ : S US

b 6=∞ Γ ` ψ : C
Γ ` ϕ U[0,b] ψ : C UCR

b 6=∞ Γ ` ϕ : C Γ ` ψ : C
Γ ` ϕ U[a,b] ψ : C UCLR

Typing of formulae as
causable/suppressable

Γ ` ϕ : C b > 0

Γ ` #[0,b) ϕ : C #C Γ ` ϕ : S
Γ ` #I ϕ : S #

S

Fig. 3. Typing rules for EMFOTL

Constants and predicates (Rules >C, ⊥S, EC, ES). The constant > (resp.
⊥) is causable (resp. suppressable). Event e(t1, . . . , tk) is causable (resp. sup-
pressable) under Γ if e ∈ C and Γ (e) = C (resp. e ∈ S and Γ (e) = S).

Negation (Rules ¬C, ¬S). Negation exchanges C and S: a formula is causable
iff its negation is suppressable; it is suppressable iff its negation is causable.

Conjunction (Rules ∧C, ∧SL, ∧SR). A conjunction is causable if both of its
conjuncts are causable; it is suppressable if either of its conjuncts is suppressable.

Quantifiers (Rules ∃C, ∃S). The formula ϕ′ = ∃x. ϕ is causable if ϕ is caus-
able: it is enough to set x to some value v and cause ϕ[x/v] to cause ϕ′.In contrast,
to suppress ϕ′ at i, we must ensure that no value of v ∈ D can satisfy ϕ. If ϕ de-
pends on the future, then values of v satisfying ϕ′ may only be discovered strictly
after i. Then, it may not be possible to decide which ϕ[x/v] to suppress at i. Our
fragment rules this case out by requiring that x be past-guarded in ϕ, i.e., that any
value of x that satisfies ϕ is a constant or present in the trace up until i. Formally:
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(a) ϕ SI ψ 0 ∈ I SC

τi

•

τi−1

•

τi+1

{ ψ }

(b) ϕ SI ψ 0 /∈ I SSL •••
{ψ} {ϕ} { ϕ }

(c) ϕ SI ψ SSLR •••
{ϕ} {ϕ} { ϕ,ψ }

(d) ϕ U[a,b] ψ b 6=∞ UCLR

{ ϕ } { ϕ } . . . { ψ }
• • •

τj = τi + b

(e) ϕ U[0,b] ψ b 6=∞ UCR

{ϕ} {ϕ} . . . { ψ }
• • •

¬ϕ ∨ τj = τi + b

(f) ϕ UI ψ US • •
{ ψ }{ ψ } . . . until¬ϕ or

τj − τi /∈ I

(g) #[0,b) ϕ b > 0 #C • •
{ ϕ }. . .

(h) #I ϕ #S • •
{ ϕ }. . .

Fig. 4. Enforcement for temporal operators: ϕ = cause ϕ and ϕ = suppress ϕ

Definition 5 (Past-guardedness). A variable x is past-guarded in ϕ iff
∀v, i. v, i � ϕ ∧ x ∈ dom v =⇒ v(x) ∈ ADi(ϕ).

Past-guardedness can be soundly overapproximated using the type system in
the upper half of Figure 3. The PG typing rules define sequents of the form
` ϕ : PG(x)p, where p ∈ {+,−}. In Appendix B, we prove

Lemma 1. For p ∈ {+,−}, if ` ϕ : PG(x)p, then x is past-guarded in pϕ.

Since (Rules SC, SSL, SSLR). As enforcers cannot affect the past, causation
of ϕ′ = ϕ SI ψ is only possible when 0 ∈ I and ψ is enforceable. In this case, ϕ′ is
caused by causing ψ in the present (Figure 4, a). To suppress ϕ′, we consider two
scenarios. If 0 /∈ I, then to suppress ϕ′, it suffices to suppress ϕ in the present
(Figure 4, b). If 0 ∈ I, both ϕ and ψ may need to be suppressed (Figure 4, c).

Until (Rules US, UCR, UCLR). The formula ϕ′ = ϕ UI ψ is causable if both
ϕ and ψ are causable: one can cause ϕ until the interval I has elapsed, and then
cause ψ ‘in the nick of time’ (Figure 4, d). This requires a finite upper bound
for I; otherwise, the enforcer may wait indefinitely to cause ψ, producing a non-
compliant trace. (For I = [a,∞), we could enforce ϕ′ non-transparently by caus-
ing ψ after an arbitrary, finite interval [a, b). In this case, the user could have
as well specified ϕ U[a,b) ψ. Hence, our type system requires a finite I.) Alter-
natively, if 0 ∈ I, then ϕ′ can be caused when ψ is causable, with the enforcer
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causing ψ as soon as ϕ ceases to hold or the interval has elapsed (Figure 4, e).
In contrast, ϕ′ can be suppressed whenever ψ is suppressable (Figure 4, f). This
also applies when I is unbounded: if necessary, the formula ψ can be suppressed
indefinitely. Enforcement can thus be performed for formulae that are generally
not supported by existing monitors [18]. Namely, monitors exclude non-future-
bounded formulae, for which compliance cannot be guaranteed by observing a
finite prefix of the trace and hence verdicts cannot be given in finite time. How-
ever, an enforcer can ensure compliance at every time-point.

Previous The formula ϕ′ =  I ϕ can neither be caused nor suppressed with-
out editing databases of events that happened strictly in the past. This goes
beyond the enforcer’s capabilities in our model.

Next (Rules #C, #S). If ϕ is suppressable, the formula ϕ′ = #I ϕ is also sup-
pressable: ϕ′ is suppressed by suppressing ϕ at the next time-point (Figure 4, g).
In contrast, causing ϕ′ is not possible for arbitrary I. If I = [a, b) with a > 0, then,
to cause ϕ′ at i, one must ensure τi+1 ≥ τi+ a. But the next time-point in the in-
put trace might be τi+1 < τi + a (e.g., τi+1 = τi), and this timestamp cannot be
suppressed. If I = [0, 0], then enforcing ϕ′′ = �ϕ′ is not possible, since no trace
satisfies ϕ′′ (a trace must satisfy progress): one cannot both support I = [0, 0]
in rule #C and use the previous definition of US. Therefore, our fragment only
supports causation of #I ϕ for intervals I of the form [0, b), b > 0 (Figure 4, h).
Our use of the context Γ is inspired by Hublet et al. [39]. By ensuring that all
events with the same name are only caused or only suppressed, we exclude non-
enforceable formulae such as e ∧ ¬e, where e is both causable and suppressable.

Example 6. We show that ϕdel presented in Example 3 is in EMFOTL. We work
with the “desugared” variant of ϕdel (instead of using abbreviations like ♦):

ϕ′del ≡ ¬
(
> U

(
∃c, d, u. deletion_request (c, d, u) ∧

(
¬
(
> U[0,30] delete (c, d, u)

))))
Furthermore, we shorten ϕ′del ≡ ¬(> U ϕ∃1), where:

ϕ∃1 ≡ ∃c. ϕ∃2 ϕ∃2 ≡ ∃d. ϕ∃3 ϕ∃3 ≡ ∃u. ϕ∧ ϕ∧ ≡ ϕ∧1
∧ ϕ∧2

ϕ∧1
≡ deletion_request (c, d, u) ϕ∧2

≡ ¬ϕU ϕU ≡ > U[0,30] delete (c, d, u)

Lastly, we use the typing rules presented in Figure 3 to show that ϕ′del types to C:

P1

P2

P3

delete ∈ C
{delete 7→ C} ` delete(c, d, u) : C EC

{delete 7→ C} ` ϕU ≡ > U[0,30] delete (c, d, u) : C
UCR

{delete 7→ C} ` ϕ∧2 ≡ ¬ϕU : S ¬S

{delete 7→ C} ` ϕ∧ ≡ ϕ∧1 ∧ ϕ∧2 : S ∧
SR

{delete 7→ C} ` ϕ∃3 ≡ ∃u. ϕ∧ : S ∃S

{delete 7→ C} ` ϕ∃2 ≡ ∃d. ϕ∃3 : S ∃S

{delete 7→ C} ` ϕ∃1 ≡ ∃c. ϕ∃2 : S ∃S

{delete 7→ C} ` > U ϕ∃1 : S US

{delete 7→ C} ` ϕ′del ≡ ¬(> U ϕ∃1) : C
¬C

where P1,2,3 respectively stand for:
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` ϕ∧1 : PG(c)+
E+

PG

` ϕ∧ : PG(c)+
∧L+

PG u 6= c

` ϕ∃3 : PG(c)+
∃PG

d 6= c

` ϕ∃2 : PG(c)+
∃PG

` ϕ∧1 : PG(d)+
E+

PG

` ϕ∧ : PG(d)+
∧L+

PG u 6= d

` ϕ∃3 : PG(d)+
∃PG

` ϕ∧1
: PG(u)+

E+
PG

` ϕ∧ : PG(u)+
∧L+

PG

Also the formula ϕlaw is in EMFOTL (see Appendix A).

5 Enforcing EMFOTL

We now describe our enforcement algorithm. First, we present the enforcer’s state,
which consists of a set of obligations (Section 5.1). We then explain how Lima et
al.’s monitoring algorithm [49] can be extended to check the satisfaction of a for-
mula ϕ under assumptions about the future (Section 5.2). Finally, we present our
algorithm (Section 5.3) and prove its soundness and transparency (Section 5.4).

5.1 Obligations

Our algorithm manipulates sets of obligations that encode the formulae to be
caused or suppressed in the future. There are two types of obligations, present
and future obligations. A present obligation is a triple (ϕ, v, p) of an MFOTL
formula ϕ, a valuation v, and a polarity p ∈ {+,−} such that pϕ ∈ EMFOTL.
After reading a new time-point, our enforcer’s state will contain a finite set of
such present obligations. Some of these obligations will be immediately discharged
via causation or suppression. Others will be processed to generate simpler present
obligations and new future obligations that will then be propagated to the next
time-point. Future obligations are triples (ξ, v, p) where ξ : N→ MFOTL maps
timestamps to EMFOTL formulae and v and p are as before. The set of future
obligations is denoted by FO. The mapping ξ is evaluated with the next timestamp
to generate present obligations at the next time-point in the trace.

In some cases (e.g., ϕdel), the enforcer must insert a time-point. In other cases
(e.g., ϕlaw), the enforcer can modify the events at existing time-points. To insert a
time-point only when necessary, we use a special, causable TP event encoding the
existence of a time-point. When processing a time-point already present in the
trace (l. 6 in Algorithm 1), the enforcer receives the additional present obligation
(TP, ∅,+), as the time-point cannot be suppressed. When computing proactive
commands (l. 3 in Algorithm 1), this obligation is not given to the enforcer, but
TP may be generated from other obligations, in which case a time-point is inserted.

Figure 5 shows the mappings used in the first component of future obligations.
There are three types of mappings, corresponding to the obligations passed to
the enforcer in the initial state and those generated from unrolling # and U.
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foinit,ϕ1 = λ_. ϕ1

foτ,#,I,ϕ1
= λτ ′. if τ ′ − τ ≤ sup I then (¬TP) UI−(τ ′−τ) (TP ∧ ϕ1) else ⊥

foτ,U,I,ϕ1,ϕ2 = λτ ′. if τ ′ − τ ≤ sup I then (TP→ ϕ1) UI−(τ ′−τ) (TP ∧ ϕ2) else ⊥

Fig. 5. Mappings in the first component of future obligations

(foτ,#,I,ϕ1
, v,+) ∈ X

v, i,X `+ #I ϕ1

#+
assm

v, i,X `+ ϕ1 (foτ,U,I,ϕ1,ϕ2 , v,+) ∈ X
v, i,X `+ ϕ1 UI ϕ2

U+
assm

(foτ,#,I,ϕ1
, v,−) ∈ X

v, i,X `− #I ϕ1

#−assm
0 ∈ I =⇒ v, i,X `− ϕ2 (foτ,U,I,ϕ1,ϕ2 , v,−) ∈ X

v, i,X `− ϕ1 UI ϕ2

U−assm

Fig. 6. Additional proof rules

5.2 Checking satisfaction of MFOTL formulae under assumptions

Our enforcer uses WhyMon’s monitoring algorithm to check the satisfaction of
formulae. Unlike Lima et al. [49], we must however compute satisfactions under
assumptions encoding future obligations. To guarantee, e.g., that causing ϕ in
the present and satisfying fo = (λτ ′.> U (TP ∧ ¬ϕ), ∅,−) guarantees �ϕ, one
must be able to check that after causing ϕ, �ϕ is satisfied at i assuming that fo
is satisfied at i+1. Since the enforcer will suppress all time-points not containing
TP, future time-points can be assumed to all contain TP.

Let {C}+ := C, {C}− := S, and σTP = 〈(τi, Di ∪ {TP})〉i∈N for the trace
σ = 〈(τi, Di)〉i∈N. Consider ϕ ∈ EMFOTL, and obtain Γ such that Γ ` ϕ : C.
Our satisfiability checker under assumptions is a function

Sat : (V→ D)×MFOTL× Tf × P(FO)→ {>,⊥}

. The implementation of the checker must ensure that, for any p ∈ {+,−}, ϕ
such that Γ ` ϕ : {C}p, and X ⊆ FO, Sat(v, ϕ, σ′, X) implies

∀ts ∈ N, D ∈ DB, σ′′ ∈ Tω. (∀(ξ, v′, p′) ∈ X. v′, |σ′| �σ′·(ts,D)·σ′′TP p
′ξ(ts))

=⇒ v, |σ′| − 1 �
σ′·(ts,D)·σ′′TP ϕ. (?)

Intuitively, this condition expresses that whenever Sat(v, ϕ, σ′, X) is true and
the (infinite) trace σ = σ′ · (ts,D) · σ′′

TP
satisfies all the future obligations in X

at time-point |σ′|, then ϕ holds over σ at time-point |σ′| − 1.
For our algorithm to eventually recognize satisfaction and terminate, one

must ensure that for large enough X, the implication (?) is an equivalence. This
guarantees that after generating a finite set of reactions and future obligations,
the algorithm can use Sat to assess that no more immediate actions are needed.

To support assumptions about the future, we extend Lima et al’s algorithm [49]
with the proof rules in Figure 6. In Appendix B, we show

Lemma 2. The proof system of [49] extended with the rules from Figure 6 yields
a decision procedure Sat that satisfies (?).

Lemma 3. There exists a set FO+
i,ts(ϕ) such that whenever X ⊇ FO+

|σ|,τ|σ|(ϕ),
the converse of (?) also holds for Sat constructed as in Lemma 2.
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5.3 The enforcement algorithm

Our enforcer’s update function enf is shown in Algorithm 2. It is used to define
an enforcer Eϕ = (S, sϕ, enf), where S = P(FO) and sϕ = {(foinit,ϕ, ∅,+)}. In the
algorithm and its description below, we annotate operators that fulfill the typing
conditions in Figure 3 with the respective typing rule names. For example, we write
ϕUCLR

[a,b] ψ to denote ϕU[a,b]ψ where b 6=∞, Γ ` ϕ : C, and Γ ` ψ : C under some Γ .
As required by Definition 2, the function enf takes a trace σ, a set of future

obligations X, and a timestamp ts as input. If ts = ⊥, i.e., the enforcer processes
a time-point already present in the trace, then ts is set to the latest timestamp
τ|τ | (line 4). The enforcer computes a (closed) formula Φ that summarizes all
obligations at the present time-point (line 5). Then Φ, σ, an empty set of future
obligations, and an empty valuation are passed to enf+ts,⊥ (line 6). The function
enf+ts,b takes a formula ϕ, a trace σ, a set of (new) future obligations X, and a
valuation v as input, and returns a triple (DC , DS , X

′) such that DC is a set of
events to cause, DS is a set of events to suppress, and X ′ is an updated version
of X. The function is parameterized by the current timestamp ts and a Boolean
b that is true iff the current time-point is the last one with the current timestamp.
The definition of enf+ (resp. enf−) guarantees that if we update Di according
to DS and DC and assume that all obligations in X ′ are satisfied at time-point
i+ 1, then ϕ is always (resp. never) satisfied under v at i on the new trace.

After computing DS , DC , and X ′, a reactive command RCom(DC , DS) is
returned (line 7) and the state is updated to X ′. If ts 6= ⊥, a similar approach is
followed, but now TP is not conjoined with Φ (line 9) and the boolean b is set
to > as enforcement happens ‘in the nick of time.’ If TP is part of the set DC

returned by enf+, then a proactive command PCom(DC) and a new state X ′ are
returned. Otherwise, NoCom is returned and the state is not updated.

The functions enf+ and enf− recurse over the structure of ϕ. The traversal
of ϕ is guided by the typing: the function enf+ (resp. enf−) is only called
on subformulae of type C (resp. S). The algorithm implements the approach
described in Section 4. For space reasons, we only explain the more complex
cases: ϕ = ϕ1 ∧C ϕ2, ϕ = ∃Sx. ϕ1, and ϕ = ϕ1 U

CLR
I ϕ2.

Causing ϕ1 ∧ ϕ2 (Algorithm 2, enf+ l. 9). Causing ϕ1 ∧ ϕ2 where both ϕ1

and ϕ2 are causable requires a fixed-point computation [39]. Consider, e.g., the
EMFOTL formula ϕ = ψ ∧ (ψ → χ), where ψ and χ both type to C. If neither ψ
nor χ are satisfied, then the right conjunct of ϕ is satisfied; however, to satisfy
the left conjunct, ψ must be caused. But after causing ψ, the right conjunct is not
satisfied, and χ must be caused too. In general, the two conjuncts are repeatedly
enforced until both are satisfied. This is achieved by combining the function fp
(performing a fixed-point computation) and enf+and,ϕ1,ϕ2,v,ts

that calls the function
enf+ on both ϕ1 and ϕ2 if none of these formulae is satisfied. In Appendix B, we
prove the termination of this fixed-point computation (Lemma 11) .

Suppressing ∃x. ϕ1 (Algorithm 2, enf− l. 13). The suppression of ∃ follows
a similar pattern, but this time there are AD|σ|(ϕ1) rather than just 2 cases to
consider, corresponding to all potential values of the (past-guarded) variable x.
Similar to the previous case, we prove termination in Appendix B.
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tp ts b X Φ DC DS X ′ Response

0 10 ⊥ {(λ_. ϕdel, ∅,+)} TP ∧ ϕdel {TP} ∅ {fo1, fo
30,10
2 } RCom(∅, ∅)

– 10 > {fo1, fo
30,10
2 } ϕU ∧ ♦[0,30](TP ∧ E′1) ∅ ∅ {fo1, fo

30,10
2 } NoCom

– 11 > {fo1, fo
30,10
2 } ϕU ∧ ♦[0,29](TP ∧ E′1) ∅ ∅ {fo1, fo

29,11
2 } NoCom

. . . . . . . . . . . . . . . . . . . . . . . . . . .
– 39 > {fo1, fo

2,38
2 } ϕU ∧ ♦[0,1](TP ∧ E′1) ∅ ∅ {fo1, fo

1,39
2 } NoCom

– 40 > {fo1, fo
1,39
2 } ϕU ∧ ♦[0,0](TP ∧ E′1) {TP, E′1} ∅ {fo1} PCom({E′1})

– 41 > {fo1} ϕdel ∅ ∅ {fo1} NoCom
. . . . . . . . . . . . . . . . . . . . . . . . . . .
– 49 > {fo1} ϕdel ∅ ∅ {fo1} NoCom
1 50 ⊥ {fo1} TP ∧ ϕdel {TP} ∅ {fo1} RCom(∅, ∅})

Fig. 7. Enforcement of the formula ϕdel on trace σ2

Causing ϕ1 U[a,b] ϕ2, b 6=∞ (Algorithm 2, enf+ l. 17–22). There are two
cases for causing ϕ1 UI ϕ2: we cause ϕ1 and generate the future obligation
foτ,U,I,ϕ1,ϕ2

if I 6= [0, 0] or b = ⊥; otherwise, we cause ϕ2 and TP.

Example 7. Let us enforce ϕdel on σ2. Consider the following abbreviation:

ϕdel ≡ �ϕ∀ ϕ∀ ≡ ∀c, d, u. deletion_request (c, d, u)→ ♦[0,30] delete (c, d, u)
ϕU ≡ (TP→ >) U (TP ∧ ¬ϕ∀) E1 ≡ deletion_request(2, 1, 1) E′1 ≡ delete(2, 1, 1)

fox,y2 ≡ (λτ ′. ♦[0,x]−(y−τ ′) (TP ∧ delete (c, d, u)) , {c 7→ 2, d 7→ 1, u 7→ 1},+)

Figure 7 shows our algorithm’s execution. Initially, enf decomposes its goal Φ =
TP∧ϕdel into the present obligations (TP, ∅,+) and (ϕdel, ∅,+). The former is dis-
charged by causing TP; the latter is unrolled into the present obligation (ϕ∀, ∅,+)
and the future obligation fo1 = (fo10,U,[0,∞),>,¬ϕ∀ , ∅,−) = (λ_. ϕU, ∅,−). The
present obligation (ϕ∀, ∅,+) is violated, since deletion_request(2, 1, 1) is satisfied
but at this point there is no corresponding delete. In this case, enf+10,⊥ generates
the future obligation fo30,10

2 . Satisfying this future obligation guarantees the sat-
isfaction of Φ, hence the algorithm proceeds. Next, the algorithm processes the
timestamp 10 ‘in the nick of time’. The function enf computes Φ = fo1(10) ∧
fo30,10

2 (10) = ϕU ∧♦[0,30](TP∧E′1) and calls enf+10,> on Φ. First, it decomposes Φ
into the present obligations po1 = (ϕ∀, ∅,+) and po2 = (♦[0,30](TP∧E′1), ∅,+) and
the future obligation fo1. The present obligation po1 is vacuously satisfied, since no
deletion_request takes place. In contrast, the satisfaction of po2 can rely on the sat-
isfaction of the future obligation (fo30,10

2 , ∅,+) at the next time-point. Hence, the
enforcer emits NoCom and propagates the future obligationsX ′ = {fo1, fo

30,10
2 } to

the next time-point. The timestamp 11 is also processed ‘in the nick of time’. The
goal Φ = fo1(11) ∧ fo30,10

2 (11) = ϕU ∧ ♦[0,29](TP ∧ E′1) is computed, and reduced
to the future obligations X ′ = {fo1, fo

29,11
2 }. Similar iterations occur until time-

stamp 40, when the goal becomes Φ = fo1(40)∧ fo
1,39
2 (40) = ϕU ∧♦[0,0](TP∧E′1).

Here, enf+40,> produces the present obligations (TP, ∅,+) and (E′1, ∅,+), which
are discharged by causing TP and E′1, respectively. Thus, DC = {TP, E′1} and the
command PCom({E′1}) is emitted, resulting in (30, {E′1}) being inserted into the
trace. The future obligations X ′ = {fo1} are propagated to the next timestamp.
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1: function enf(σ,X, ts)
2: let 〈τ〉, 〈D〉 = unzip(σ) in
3: if ts = ⊥ then
4: let ts = τ|τ | in
5: let Φ = TP ∧

∧
(ξ,v,>)∈X ξ(ts)[v] ∧

∧
(ξ,v,⊥)∈X ¬ξ(ts)[v] in

6: let (DC , DS , X
′) = enf+ts,⊥(Φ, σ, ∅, ∅) in

7: (RCom(C \ {TP}, S), X ′)
8: else
9: let Φ =

∧
(ξ,v,>)∈X ξ(ts)[v] ∧

∧
(ξ,v,⊥)∈X ¬ξ(ts)[v] in

10: let (DC , DS , X
′) = enf+ts,>(Φ, σ · (ts, ∅), ∅, ∅) in

11: if TP ∈ DC then (PCom(DC \ {TP}), X ′) else (NoCom, X)
12: end if
13: end function

1: function enf+ts,b(ϕ, σ,X, v)
2: if ϕ = >C then
3: (∅, ∅, ∅)
4: else if ϕ = p(t) then
5: ({(p, (J t Kv))}, ∅, ∅)
6: else if ϕ = ¬Cϕ1 then
7: enf−ts,b(ϕ1, σ,X, v)

8: else if ϕ = ϕ1 ∧C ϕ2 then
9: fp(σ,X, enf+and,ϕ1,ϕ2,v,ts

)

10: else if ϕ = ∃Cx. ϕ1 then
11: enf+ts,b(ϕ1, σ,X, v[0/x])

12: else if ϕ = #C
I ϕ1 then

13: (∅, ∅, {(foτ,#,I,ϕ1
, v,+)})

14: else if ϕ = ϕ1 S
C
I ϕ2 then

15: enf+ts,b(ϕ2, σ,X, v)

16: else if ϕ = ϕ1 U
CLR
I ϕ2 then

17: if I = [0, 0] ∧ b then
18: enf+ts,b(ϕ2, σ,X, v) d ({TP}, ∅, ∅)
19: else
20: enf+ts,b(ϕ1, σ,X, v) d
21: (∅, ∅, {(foτ,U,I,ϕ1,ϕ2 , v,+)})
22: end if
23: else if ϕ = ϕ1 U

CR
I ϕ2 then

24: if I = [0, 0] ∧ b then
25: enf+ts,b(ϕ2, σ,X, v) d ({TP}, ∅, ∅)
26: else if ¬Sat(v, ϕ1, σ,X) then
27: enf+ts,b(ϕ2, σ,X, v)
28: else
29: (∅, ∅, {(foτ,U,I,ϕ1,ϕ2 , v,+)})
30: end if
31: end if
32: end function

1: function fp(σ · 〈(τ,D)〉 , X, f)
2: (DC , DS)← (∅, ∅)
3: r ← None
4: while (DC , DS , X) 6= r do
5: r ← (DS , DC , X)
6: let D′ = (D \DS) ∪DC in
7: (DC , DS , X)← r d f(σ · 〈(τ,D′)〉 , X)
8: end while
9: (DC , DS , X)
10: end function

1: function enf−ex,ϕ1,v,ts,b
(σ,X)

2: r ← (∅, ∅, ∅)
3: for d ∈ AD|σ|(ϕ1) do
4: if ¬Sat(v[d/x],¬ϕ1, σ,X) then
5: r ← r d enf−ts,b(ϕ1, σ,X, v[d/x])
6: end if
7: end for
8: r
9: end function

1: function enf−ts,b(ϕ, σ,X, v)
2: if ϕ = ⊥S then
3: (∅, ∅, ∅)
4: else if ϕ = p(t) then
5: (∅, {(p, (J t Kv))}, ∅)
6: else if ϕ = ¬Sϕ1 then
7: enf+ts,b(ϕ1, σ,X, v)

8: else if ϕ = ϕ1 ∧SL ϕ2 then
9: enf−ts,b(ϕ1, σ,X, v)

10: else if ϕ = ϕ1 ∧SR ϕ2 then
11: enf−ts,b(ϕ2, σ,X, v)

12: else if ϕ = ∃Sx. ϕ1 then
13: fp(σ,X, enf−ex,ϕ1,v,ts,b

)

14: else if ϕ = #S
I ϕ1 then

15: (∅, ∅, {(foτ,#,I,ϕ1
, v,−)})

16: else if ϕ = ϕ1S
SL
I ϕ2 then

17: enf−ts,b(ϕ1, σ,X, v)

18: else if ϕ = ϕ1S
SR
I ϕ2 then

19: let ϕ′ =
20: ¬(ϕ1 ∧SL (ϕ1 SI ϕ2)) in
21: fp(σ,X, enf+and,ϕ′,¬ϕ2,v,ts,b

)

22: else if ϕ = ϕ1U
S
Iϕ2 then

23: fp(σ,X, enf−until,I,ϕ1,ϕ2,v,ts,b
)

24: end if
25: end function

1: function enf−until,I,ϕ1,ϕ2,v,ts,b
(σ,X)

2: r ← (∅, ∅, ∅)
3: if 0 ∈ I ∧ ¬Sat(v,¬ϕ2, σ,X) then
4: r ← enf−ts,b(ϕ2, σ,X, v)
5: end if
6: if ¬Sat(v,¬ϕ1, σ,X) then
7: r ← r d (∅, ∅, {(foτ,U,I,ϕ1,ϕ2 , v,−)}
8: end if
9: r
10: end function

1: function enf+and,ϕ1,ϕ2,v,ts,b
(σ,X)

2: r ← (∅, ∅, ∅)
3: if ¬Sat(v, ϕ1, σ,X) then
4: r ← r d enf+ts,b(ϕ1, σ,X, v)
5: end if
6: if ¬Sat(v, ϕ2, σ,X) then
7: r ← r d enf+ts,b(ϕ2, σ,X, v)
8: end if
9: r
10: end function

Algorithm 2: Proactive real-time first-order enforcement algorithm
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Similar iterations occur until timestamp 50. At this point, b = ⊥ and the trace
is already compliant, so the enforcer responds with RCom(∅, ∅}).

5.4 Correctness

Let ϕ be a closed formula to be enforced. The proofs of all lemmata are given in
Appendix B. First, recall the following standard definition of safety [6]:

Definition 6. P is a safety property iff for any σ ∈ Tω \P , there exists a finite
prefix σ′ ∈ Tf of σ such that for all σ′′ ∈ Tω, we have σ · σ′′ /∈ P . A formula ϕ
is a safety formula when L(ϕ) is a safety property.

Our algorithm can enforce formulae that are not safety formulae. This is the
case, e.g., for any ψ ∨ ♦χ ≡ ¬(¬ψ ∧ ¬(> U χ)), where ψ types to C. In this case,
enforcement is performed greedily: if the monitor cannot construct a proof of ♦χ
(which occurs whenever χ cannot be satisfied in the present), then ψ is caused.
Thus our algorithm actually enforces a stronger formula, which we denote by
[ψ ∨ ♦χ]+ ≡ ¬(¬ψ ∧Rω ¬(> U χ)), where ∧Rω has the semantics

v, i �σ ϕ ∧Rω ψ iff v, i �σ ϕ and ∃σ′. v, i �σ|..i·σ′ ψ.

This semantics states that ϕ ∧Rω ψ holds whenever ϕ holds on σ at time-point
i and there exists at least one extension of the prefix σ|..i on which ψ holds.
The formula [ψ ∨ ♦χ]+ thus requires than ψ holds on σ at time-point i and ♦ψ
holds on σ at time-point i for any extension of σ |..i. The formula [ψ ∨ ♦χ]+,
unlike ψ ∨ ♦χ, is safety. In Appendix B, we define a similar transformation [•]p,
p ∈ {+,−} for all operators and prove

Lemma 4. For any ϕ such that Γ ` ϕ : {C}p, we have v, i |=σ p[ϕ]p =⇒ v, i |=σ
pϕ. In particular, L([ϕ]+) ⊆ L(ϕ).

We prove that Eϕ soundly enforces [ϕ]+, and hence ϕ:

Theorem 1 (Soundness). If ϕ ∈ EMFOTL, the enforcer Eϕ is sound with
respect to L([ϕ]+) ⊆ L(ϕ). As a consequence, ϕ is enforceable.

In our model, transparent enforcement of non-safety formulae such as ψ ∨♦χ
is generally not possible, since the necessity to cause ψ depends on future events:

Lemma 5. If a property admits a transparent enforcer, it is a safety formula.

Thus, when enforcing a non-safety formula ϕ, one can at best achieve trans-
parency with respect to some sound safety approximation ϕ′ of ϕ. We prove:

Theorem 2 (Transparency). If ϕ ∈ EMFOTL, the enforcer Eϕ is transparent
with respect to L([ϕ]+).

By imposing more constraints on the formulae (e.g., the formula χ must not
depend on the future in ψ ∧SupAndL χ), one can obtain an EMFOTL fragment
for which [ϕ]+ = ϕ and the enforcer Eϕ is transparent (included in Appendix B).
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collect(c, d, u)699 use(c, d, u)-2316 consent(u, c)699 legal_grounds(u, d)397 revoke(u, c)+8

inform(u)+0 deletion_request(c, d, u)8 delete(c, d, u)+521 share(p, d)982 notify(p, d)+0

“Minimization” ϕmin = �(∀c, d, u. collect(c, d, u)→ ♦ use(c, d, u))
“Limitation” ϕlim = �(∀c, d, u. collect(c, d, u)→ ♦ delete(c, d, u))
“Lawfulness” ϕlaw = �(∀c, d, u. use(c, d, u)→ �(consent(u, c) ∨ legal_grounds(u, d)))

“Consent” ϕcon = �(∀c, d, u. use(c, d, u)→ (� legal_grounds(u, d)) ∨ (¬revoke(u, c) S consent(u, c)))

“Information” ϕinf = �(∀c, d, u. collect(c, d, u)→ ((# inform(u)) ∨ (� inform(u))))

“Deletion” ϕdel = �(∀c, d, u. deletion_request(c, d, u)→ ♦[0,30] delete(c, d, u))

“Sharing” ϕsha = �(∀c, d, u, p. deletion_request(c, d, u) ∧ (� share(p, d))→ ♦[0,30] notify(p, d))

c: data category; d: data ID; u: user ID; p: processor ID; -: suppressable; +: causable

Fig. 8. Selected events and policies from Arfelt et al. [7]

6 Evaluation

We implemented our type system and enforcement algorithm in a tool, called
WhyEnf, consisting of 2 800 lines of OCaml code. WhyEnf uses a modified
version of WhyMon [49], which we call WhyMon*. It ignores the explanations’
structures (not required by our algorithm) and returns only Boolean verdicts.

Our evaluation aims to answer the following research questions:
RQ1. Is EMFOTL expressive enough to formalize real-world policies?

Is manual formula rewriting necessary, as in previous works [14,40]?
RQ2. At what maximum event rate can WhyEnf perform real-time enforcement?
RQ3. Do WhyEnf’s performance and capabilities improve upon the state-of-

the-art?
The notion of ‘real-world policies’ in RQ1 is domain-dependent. In the following,
we demonstrate our approach’s effectiveness in the case of privacy regulations.

Case study. Arfelt et al. [7] define events and MFOTL formulae formalizing
core GDPR provisions that they monitor on a trace produced by a real-world
system [24]. Relevant events (superscripted by their number of occurrences in the
trace) and formulae are shown in Figure 8 and Examples 1 and 3. We pre-process
the trace to obtain 3 846 time-points containing 5 630 system events distributed
over 515 days. We interpret the ‘Lawyer review’ and ‘Architect review’ events as
both use and share (sharing with third-parties) events, and the ‘Abort’ events as
both revoke (revoking consent) and deletion_request. Otherwise, we follow Arfelt
et al.’s pre-processing. We make the following assumptions [40]: use events are
suppressable, while delete, inform (informing the user), and notify (notifying a
third-party) events are causable. All metric constraints are specified in days.

RQ1: Expressiveness. Except for ϕmin, all formulae are in EMFOTL. Unlike in
previous works [15, 18, 40], no further policy engineering (e.g., manual rewrit-
ing to equivalent formulae in supported fragments) is needed. For all enforce-
able formulae except ϕlim, our algorithm guarantees transparent enforcement.
For ϕlim, which contains an unbounded ♦ operator, non-transparent enforcement
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Fig. 9. RQ2: Maximum latency of WhyEnf and event rate for the formulae in Figure 8.

is possible by enforcing the stronger formula ϕblim = �(∀c, d, u. collect(c, d, u)→
♦[0,b] delete(c, d, u)) for any b ∈ N. The formula ϕmin, capturing data minimiza-
tion, is intrinsically non-enforceable, as a sound Eϕmin must either always suppress
collect, or eventually cause use, which is only suppressable.

WhyEnf’s type system helps determine appropriate suppressible and caus-
able events. For instance, if use was marked as only-observable, the type checker
would state that ϕlaw is not enforceable and suggest to make use suppressible,
or otherwise make either consent or legal_ground causable. Since use actually is
suppressable, the type checker concludes that ϕlaw is transparently enforceable.

RQ2: Maximum event rate. We enforce the enforceable formulae from Figure 8,
i.e., all but ϕmin. As we do not have access to the SuS, we simulate online
enforcement by reproducing [45] the events from the above trace to WhyEnf
at the speed specified by the trace’s timestamps. We also consider different
accelerations of the original trace’s real-time behavior to challenge WhyEnf. We
measure WhyEnf’s latency ` and processing time t for each time-point. Latency
is the time delay between the emission of a time-point to WhyEnf and the
reception of the corresponding command, whereas processing time is the time
WhyEnf effectively takes to process the time-point. We report the average latency
(avg`(a)) and maximum latency (max`(a)) given an acceleration a, as well as the
average processing time (avgt), and the maximum processing time (maxt) all
computed over the entire trace. If max`(a) is smaller than the interval 1

a between
two timestamps in the accelerated trace, then the real-time condition (Section 3.1)
is met assuming that the SuS’s and communication latency are small enough.

All measurements were performed on a 2.4 GHz Intel i5-1135G7 CPU with
32 GB RAM. For each formula and acceleration a ∈ {105 · 20, . . . , 105 · 29}, we
plot max`(a), the function 1

a (right y-axis), and the corresponding average event
rate avger(a) (left y-axis) in Figure 9. We include similar plots for WhyMon*
and EnfPoly and latency profiles for individual runs in Appendix D.

As presented in Figure 9, for all formulae, WhyEnf meets the real-time
condition for all accelerations up to 4 · 105, which corresponds to a maximum
latency of 96 ms and an average event rate of 51 events/s. Hence, even though
the analyzed trace specifies time intervals in days, the real-time enforcement
of the same trace can in fact be performed for sub-second intervals. Note that
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WhyEnf WhyMon* EnfPoly
Policy a avg` max` avgt maxt avger a avg` max` avgt maxt avger a avg` max` avgt maxt avger
ϕlim 3.2e6 0.19 14 0.22 1.0 632 has unbounded future requires proactivity
ϕlaw 3.2e6 2.6 15 2.6 15 405 3.2e6 2.5 12 2.5 12 405 5.1e7 0.10 1.0 0.14 1.0 6479
ϕcon 4e5 20 96 20 96 51 8e5 9.3 51 9.3 52 101 5.1e7 0.10 1.0 0.14 1.0 6479
ϕinf 1.6e6 2.9 13 3.0 13 202 3.2e6 0.16 16 0.19 1.0 405 requires proactivity
ϕdel 3.2e6 0.19 19 0.22 1.0 632 1e5 42 434 42 434 13 requires proactivity
ϕsha 1.6e6 4.6 26 4.7 26 202 1e5 69 289 69 299 13 requires proactivity

Fig. 10. RQ2–3: Latency and processing time for the largest a such that max`(a) ≤ 1/a.

the average latency is much lower (20 ms for the most challenging policy), with
the maximum latency occurring when many events occur within a short time
span. The two formulae that only define future obligations, ϕlim and ϕdel, have
much lower maximum latency, of 14 and 19 ms, respectively, corresponding to
an average event rate of about 600 events/s. Due to proactivity, the enforcer
does not need to keep the history of past events for these formulae. Overall, our
experiments show that WhyEnf can efficiently enforce a real-world SuS.

RQ3: Comparison with the state of the art. We compare WhyEnf’s performance
to its two most closely related tools: WhyMon*, which provides similar expres-
siveness as WhyEnf but no enforcement, and EnfPoly [39], the only tool sup-
porting non-proactive enforcement of an MFOTL fragment. In addition to the
real-world log [24], we generate synthetic traces with n ∈ {100 · 20, . . . , 100 · 28}
time-points each containing k ∈ {20, . . . , 28} random events. We report avgt for
the three tools and six formulae in Figure 11, imposing a 10-minute timeout (t.o.).

WhyMon* cannot monitor ϕlim, as the formula has an unbounded ♦ opera-
tor. For all other formulae, WhyMon* satisfies the real-time condition for accel-
erations a ≤ 105. WhyEnf’s latency is at most twice WhyMon*’s for ϕlaw and
ϕcon as the enforcer calls the monitor at least once per iteration and also per-
forms fixed-point computations (Figure 10). In contrast, WhyEnf can enforce
ϕlim and has significantly (up to 22 times) lower latency for ϕinf , ϕsha, and ϕdel.
Unlike WhyMon*, WhyEnf is able to lazily evaluate implications involving fu-
ture obligations, which improves its runtime performance. WhyEnf’s processing
time also scales better than WhyMon*’s for large values of n and k (Figure 11).

Only ϕlaw and ϕcon are transparently enforceable without proactivity. We
enforce them using EnfPoly after manually rewriting them into equivalent
formulae in EnfPoly’s fragment. WhyEnf’s average and maximum latencies are
higher than EnfPoly’s, but WhyEnf’s algorithm covers a much larger fragment
of MFOTL than EnfPoly, which makes computating verdicts more costly. The
same behavior is observed in terms of average processing time (Figure 11).

7 Related Work

Security automata [26, 58] were first used for enforcement by terminating the
SuS. Fredrikson et al. [31] also terminate the SuS upon violation detection, but
use symbolic automata which allow policies to refer to the SuS’s state. Bauer et
al. [21] investigated enforcers that can cause and suppress events, as do Ligatti
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WhyEnf WhyMon* EnfPoly
k = 10 n : 100 400 1.6e3 6.4e3 2.6e4 n : 100 400 1.6e3 6.4e3 2.6e4 n : 100 400 1.6e3 6.4e3 2.6e4

ϕlim .29 .28 .28 .30 .30 has unbounded future requires proactivity
ϕlaw .73 1.3 2.0 2.2 2.7 .26 .57 1.4 3.5 15 .16 .16 .16 .16 .16
ϕcon 1.8 4.9 9.1 11 12 .53 1.7 7.4 11 t.o. .19 .16 .18 .17 .17
ϕinf .78 1.0 1.2 1.1 1.2 .22 .31 .51 1.0 2.2 requires proactivity
ϕdel .17 .24 .26 .28 .56 .40 1.2 2.9 4.4 4.9 requires proactivity
ϕsha .86 2.3 5.3 7.6 7.0 .54 2.3 13 56 t.o. requires proactivity

n = 1000 k : 1 4 16 64 256 k : 1 4 16 64 256 k : 1 4 16 64 256

ϕlim .24 .24 .35 .83 4.7 has unbounded future requires proactivity
ϕlaw .61 1.2 2.2 2.9 6.1 .38 .71 1.3 1.6 2.3 .14 .19 .18 .22 .38
ϕcon 1.4 4.1 9.5 11.5 13.3 1.2 4.3 5.3 4.2 4.9 .14 .16 .16 .20 .32
ϕinf .48 .79 1.4 4.8 24 .21 .28 .44 .78 1.1 requires proactivity
ϕdel .23 .24 .32 .40 1.0 .44 1.1 3.0 4.8 6.3 requires proactivity
ϕsha .78 3.2 7.4 7.1 12 1.2 4.3 9.7 14 16 requires proactivity

Fig. 11. RQ3: Average processing time (ms) for different trace and time-point sizes.

et al. [47], who used edit automata with the ability to buffer events. Ngo et
al. [51] study policy enforcement for reactive systems for which they disallow
the enforcer to buffer events or inspect SuS code. Basin et al. [15] distinguish
between suppressable and only-observable events, without considering causation.
More complex bidirectional enforcement [3, 4] and enforcement through delaying
events [27, 54] have also been proposed. Pinisetty et al. [55] further allow the
enforcer inspect SuS code perform the, so called, predictive enforcement.

Most runtime enforcement approaches (and tools [28,29]) rely on automata as
policies. Metric interval temporal logic formulae can be enforced via translation
to timed automata [53,57]. Basin et al. [11,12] use dynamic condition response
graphs [36] to formalize and enforce obligations in real time by suppressing and
(proactively) causing events. Finally, controller synthesis tools for LTL [25,44,60],
Timed CTL [22,52], or MTL [38,46] can generate enforcement mechanisms.

To the best of our knowledge, only few approaches enforce first-order temporal
policies. Hallé and Villemaire [33,34] develop a monitor for LTL-FO+, a first-order
variant of future-only linear temporal logic. They use the monitor to block the
system in case of detected policy violations, in the spirit of the work on security
automata [26,58]. Hublet et al. [39–41] developed the EnfPoly tool that enforces
policies from a fragment of MFOTL that can contain future operators, but only
nested with past ones such that the formula overall does not refer to the future.
Independently, Aceto et al. [2–5] consider the safety fragment of Hennessy-Milner
Logic (HML) with recursion as their policy language. They generalize HML to
allow quantification over event parameters, but do not support time constraints.
They also focus on instrumentation scenarios where all events are suppressable.

A satisfiability checking tool [30] and many runtime monitoring tools sup-
port (different fragments of) MFOTL [23], including MonPoly [13, 17–19], Veri-
Mon [9,10,59] and DejaVu [35]. Lima et al. [48] recently introduced Explana-
tor2, an MTL monitor that outputs explanations. They later extended their
work to MFOTL with the WhyMon tool [49], upon which our enforcer relies.
WhyMon supports a large fragment of MFOTL as it uses partitioned decision
trees to represent variable assignments. To the best of our knowledge, all existing
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monitoring tools only support safety formulae of the form �ϕ. Our work addi-
tionally supports (non-transparent) enforcement of some non-safety formulae.

8 Conclusion

We have presented the first proactive real-time enforcement algorithm and an
efficient tool, WhyEnf, for metric first-order temporal logic. Our approach lends
itself to a number of extensions. For instance, WhyMon’s runtime performance
can be optimized for large formulae. Features like complex data types [50],
let bindings [61], and aggregations [16] would further improve our enforcer’s
expressiveness. Finally, refinements of the type system when the same event can
be both caused and suppressed in different contexts would be a useful addition.
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A Further examples

A.1 WhyMon (Section 2)

WhyMon’s algorithm [49] shows that σ2 violates ϕdel (without �) at time-point
0 by constructing the proof

deletion_request(2, 1, 1) ∈ D0

{c 7→ 2, d 7→ 1, u 7→ 1}, 0 `+ deletion_request(c, d, u)
p+

P

{c 7→ 2, d 7→ 1, u 7→ 1}, 0 `− deletion_request(c, d, u)→ ♦[0,30] delete(c, d, u)
→−

{c 7→ 2, d 7→ 1}, 0 `− ∀u. deletion_request(c, d, u)→ ♦[0,30] delete(c, d, u)
∀−

{c 7→ 2}, 0 `− ∀d, u. deletion_request(c, d, u)→ ♦[0,30] delete(c, d, u)
∀−

∅, 0 `− ∀c, d, u. deletion_request(c, d, u)→ ♦[0,30] delete(c, d, u)
∀−

where P corresponds to the subproof

delete(2, 1, 1) /∈ D0

{c 7→ 2, d 7→ 1, u 7→ 1}, 0 `− delete(c, d, u)
p−

{c 7→ 2, d 7→ 1, u 7→ 1}, 0 `− ♦[0,30] delete(c, d, u)
♦−

A.2 EMFOTL (Section 4)

For ∀, �,→, �, and ♦, we can straightforwardly derive from the rules in Figure 3
the following simpler rules:

x 6= z ` ϕ : PG(z)−

` ∀x. ϕ : PG(z)−
∀−PG

` ϕ : PG(x)+

` �ϕ : PG(x)+
�+

PG

` ϕ : PG(x)+

` ϕ→ ψ : PG(x)−
→L−

PG

` ψ : PG(x)−

` ϕ→ ψ : PG(x)−
→R−

PG
` ϕ : PG(x)− Γ ` ϕ : C

Γ ` ∀x. ϕ : C ∀C
` ϕ : S

Γ ` ϕ→ ψ : C →
CL

` ψ : C
Γ ` ϕ→ ψ : C →

CR
b 6=∞ Γ ` ϕ : C
Γ ` �[a,b] ϕ : C �C

Γ ` ϕ : C
Γ ` ♦I ϕ : C ♦

C

Further, let

ϕ11 = ∀c. ϕ12 ϕ12 = ∀d. ϕ13 ϕ13 = ∀u. ϕ14

ϕ14 = use(c, d, u)→ �(consent(u, c) ∨ legal_ground(u, u)).

With these, we prove that ϕlaw types to C as follows:

P3

P2

P1

use ∈ S
{use 7→ S} ` use(c, d, u) : S ES

{use 7→ S} ` ϕ14 : C →CL

{use 7→ S} ` ϕ13 ≡ ∀d. ϕ14 : C ∀
C

{use 7→ S} ` ϕ12 ≡ ∀d. ϕ13 : C ∀C

{use 7→ S} ` ϕ11 ≡ ∀c. ϕ12 : C ∀C

{use 7→ S} ` ϕlaw ≡ �ϕ11 : C �
C
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where P1,2,3 stand for the subproofs

` use(c, d, u) : PG(c)+
E+

PG

` ϕ14 : PG(c)−
→L−

PG

d 6= u

` use(c, d, u) : PG(d)+
E+

PG

` ϕ14 : PG(d)−
→L−

PG

` ϕ13 ≡ ∀u. ϕ14 : PG(d)−
∀−PG,

and
c 6= d

c 6= u

` use(c, d, u) : PG(c)+
E+

PG

` ϕ14 : PG(c)−
→L−

PG

` ϕ13 ≡ ∀u. ϕ14 : PG(c)−
∀−PG

` ϕ12 ≡ ∀d. ϕ13 : PG(c)−
∀−PG,

respectively. Similarly, with

ϕ21 = ∀c. ϕ22 ϕ22 = ∀d. ϕ23 ϕ23 = ∀u. ϕ24

ϕ24 = deletion_request(c, d, u)→ ♦[0,30] delete(c, d, u),

we prove that ϕdel types to C as follows:

P6

P5

P4

delete ∈ C
{delete 7→ C} ` delete(c, d, u) : C EC

{delete 7→ C} ` ♦[0,30] delete(c, d, u) : C
♦C

{delete 7→ C} ` ϕ24 : C →CR

{delete 7→ C} ` ϕ23 ≡ ∀d. ϕ24 : C ∀C

{delete 7→ C} ` ϕ22 ≡ ∀d. ϕ23 : C ∀C

{delete 7→ C} ` ϕ21 ≡ ∀c. ϕ22 : C ∀C

{delete 7→ C} ` ϕdel ≡ �ϕ21 : C �C

where P4,5,6 stand for the subproofs

` delete(c, d, u) : PG(c)+
E+

PG

` ϕ24 : PG(c)−
→L−

PG,
d 6= u

` delete(c, d, u) : PG(d)+
E+

PG

` ϕ24 : PG(d)−
→L−

PG

` ϕ23 ≡ ∀u. ϕ24 : PG(d)−
∀−PG,

and
c 6= d

c 6= u

` delete(c, d, u) : PG(c)+
E+

PG

` ϕ24 : PG(c)−
→L−

PG

` ϕ23 ≡ ∀u. ϕ24 : PG(c)−
∀−PG

` ϕ22 ≡ ∀d. ϕ23 : PG(c)−
∀−PG,

respectively.

A.3 Enforcement of ϕlaw and ϕdel over σ1 and σ2 (Section 5.3)

Recall the following formulae:

ϕlaw = �(∀c, d, u. use(c, d, u)→ �(consent(u, c) ∨ legal_grounds(u, d)))

ϕdel = �(∀c, d, u. deletion_request(c, d, u)→ ♦[0,30] delete(c, d, u))

– Enforcing ϕlaw over σ1 (the trace is already compliant).
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Let fo1 = (λ_.> U ¬ϕ11, ∅,−). The enforcement is as follows:
tp ts Dtp b X Φ C S X ′ o σ
0 10 {consent(1, 1), consent(1, 2)} ⊥ {(λ_. ϕlaw, ∅,+)} TP ∧ ϕlaw {TP} ∅ {fo1} RCom(∅, ∅) 〈(10, D0)〉
– 10 – > {fo1} ϕlaw ∅ ∅ {fo1} NoCom 〈(10, D0)〉
– 11 – > {fo1} ϕlaw ∅ ∅ {fo1} NoCom 〈(10, D0)〉
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 49 – > {fo1} ϕlaw ∅ ∅ {fo1} NoCom 〈(10, D0)〉
1 50 {use(1, 3, 1), use(2, 1, 1)} ⊥ {fo1} TP ∧ ϕlaw {TP} ∅ {fo1} RCom(∅, ∅) 〈(10, D0), (50, D1)〉

At time-point 0, the only future obligation is (foinit,ϕlaw
, ∅,+) = (λ_. ϕlaw, ∅,+),

which is conjoined with TP as a time-point already exists. The goal formula
Φ = TP ∧ ϕlaw is computed and passed to enf+ with ts = 10 and b = ⊥. The
function enf+ first decomposes the goal into the present obligations (TP, ∅,+)
and (ϕlaw, ∅,+) = (�ϕ11, ∅,+). It discharges the former by causing TP, and un-
rolls the latter into the present obligation (ϕ11, ∅,+) and the future obligation
fo1 = (foU,[0,∞),>,¬ϕ11

, ∅,−) = (λ_.> U ¬ϕ11, ∅,−) (recall that �ϕ11 is syntac-
tic sugar for ¬(> U ¬ϕ11)). The present obligation (ϕ11, ∅,+) is already satis-
fied since no use event takes place in the present. Hence the enforcer returns
C = {TP} and X ′ = {fo1}, which emits the command RCom(∅, ∅). Next, as the
next time-point has timestamp 50 > 0, the enforcer processes the timestamps 10
to 49 ‘in the nick of time.’ For each of these timestamps, the function computes
Φ = foU,[0,∞),>,¬ϕ11

(ts) = �ϕ11 = ϕlaw and calls enf+ on Φ using ts and b = >.
It decomposes Φ into the present obligation (ϕ11, ∅,+), which is immediately sat-
isfied since no use takes place, and the future obligation fo1, which is propagated
to the next iteration with the command NoCom. At time-point 1 with timestamp
50, we have the same goal TP ∧ ϕlaw as in iteration 0. Again the present obliga-
tion (ϕ11, ∅,+) derived from ϕlaw is already satisfied, since every use(c, d, u) is
matched by some consent(u, c) in the past (use(1, 3, 1) by consent(1, 1); use(2, 1, 1)
by consent(1, 2)). Hence RCom(∅, ∅) is again emitted, and the set of obligations
X ′ = {fo1} is propagated. The trace, which was already compliant with ϕlaw,
has not been modified.
– Enforcing ϕdel over σ1 (the trace is already compliant).
Let fo2 = (λ_.> U ¬ϕ21, ∅,−). The enforcement is as follows:
tp ts Dtp b X Φ C S X ′ o σ
0 10 {consent(1, 1), consent(1, 2)} ⊥ {(λ_. ϕdel, ∅,+)} TP ∧ ϕdel {TP} ∅ {fo2} RCom(∅, ∅) 〈(10, D0)〉
– 10 – > {fo2} ϕdel ∅ ∅ {fo2} NoCom 〈(10, D0)〉
– 11 – > {fo2} ϕdel ∅ ∅ {fo2} NoCom 〈(10, D0)〉
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 49 – > {fo2} ϕdel ∅ ∅ {fo2} NoCom 〈(10, D0)〉
1 50 {use(1, 3, 1), use(2, 1, 1)} ⊥ {fo2} TP ∧ ϕdel {TP} ∅ {fo2} RCom(∅, ∅) 〈(10, D0), (50, D1)〉

Again, there are no violations. The execution is similar to the previous case,
but this time satisfaction of ϕ11 is obtained at all time-points because no
deletion_request event is ever present in the trace.
– Enforcing ϕlaw over σ2 (violation at time-point 1 : no prior consent given).
tp ts Dtp b X Φ C S X ′ o σ
0 10 {deletion_request(2, 1, 1)} ⊥ {(λ_. ϕlaw, ∅,+)} TP ∧ ϕlaw {TP} ∅ {fo1} RCom(∅, ∅) 〈(10, D0)〉
– 10 – > {fo1} ϕlaw ∅ ∅ {fo1} NoCom 〈(10, D0)〉
– 11 – > {fo1} ϕlaw ∅ ∅ {fo1} NoCom 〈(10, D0)〉
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 49 – > {fo1} ϕlaw ∅ ∅ {fo1} NoCom 〈(10, D0)〉
1 50 {use(1, 3, 1)} ⊥ {fo1} TP ∧ ϕlaw {TP} {use(1, 3, 1)} {fo1} RCom(∅, {use(1, 3, 1)}) 〈(10, D0), (50, ∅)〉

The execution is similar to the enforcement of ϕlaw on σ2 until time-point 1.
There, the goal TP ∧ ϕlaw is decomposed into the present obligations (TP, ∅,+)
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and (ϕ11, ∅,+) and the future obligation fo1. But now ϕ11 is violated, since
use(1, 3, 1) is not matched by any past consent(1, 1) event. To recover satisfaction,
the use event needs to be suppressed. Note that the corresponding → operator is
labeled with →SL, thus guiding enfp towards suppression of use(c, d, u) whenever
the implication is false. Hence enf+ returns S = {use(1, 3, 1)} together with
X ′ = {fo1}. This results in the command RCom(∅, {use(1, 3, 1)}) being emitted,
and the second time-point in the enforced trace is (50, ∅).
– Enforcing ϕdel over σ2 (violation at timestamp 40 : deletion missing).

Let fox,y3 = (λτ ′. ♦[0,x]−(τ ′−y) TP∧delete(c, d, u), {c 7→ 2, d 7→ 1, u 7→ 1},+), σ1 =
〈(10, D0), (30, {delete(2, 1, 1)})〉, σ2 = 〈(10, D0), (30, {delete(2, 1, 1)}), (50, D1)〉

tp ts Dtp b X Φ C S X ′ o σ

0 10 {deletion_request(2, 1, 1)} ⊥ {(λ_. ϕdel, ∅,+)} TP ∧ ϕdel {TP} ∅ {fo2, fo30,103 } RCom(∅, ∅) 〈(10, D0)〉
– 10 – > {fo2, fo30,103 } ϕdel ∧ ♦[0,30] delete(2, 1, 1) ∅ ∅ {fo2, fo30,103 } NoCom 〈(10, D0)〉
– 11 – > {fo2, fo30,103 } ϕdel ∧ ♦[0,29] delete(2, 1, 1) ∅ ∅ {fo2, fo29,113 } NoCom 〈(10, D0)〉
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 39 – > {fo2, fo2,383 } ϕdel ∧ ♦[0,1] delete(2, 1, 1) ∅ ∅ {fo2, fo1,393 } NoCom 〈(10, D0)〉
– 40 – > {fo2, fo1,393 } ϕdel ∧ ♦[0,0] delete(2, 1, 1) {TP, delete(2, 1, 1)} ∅ {fo2} PCom({delete(2, 1, 1)}) σ1
– 41 – > {fo2} ϕdel ∅ ∅ {fo2} NoCom σ1
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 49 – > {fo2} ϕdel ∅ ∅ {fo2} NoCom σ1
1 50 {use(1, 3, 1)} ⊥ {fo2} TP ∧ ϕdel {TP} ∅ {fo2} RCom(∅, ∅}) σ2

At time-point 0, the function enf+ first decomposes its goal TP ∧ ϕdel into the
present obligations (TP, ∅,+) and (ϕdel, ∅,+) = (�ϕ21, ∅,+). It discharges the
former by causing TP, and unrolls the latter into the present obligation (ϕ21, ∅,+)
and the future obligation fo2 = (foU,[0,∞),>,¬ϕ21

, ∅,−) = (λ_.> U ¬ϕ11, ∅,−).
The present obligation (ϕ21, ∅,+) is violated, since deletion_request(2, 1, 1) is true
but there is no corresponding delete in the future yet. The corresponding → oper-
ator is labeled with→CR, leading enf+ to generate the future obligation fo30,103 =
(λτ ′. ♦[0,30]−(τ ′−10) TP ∧ delete(c, d, u), {c 7→ 2, d 7→ 1, u 7→ 1},+). Satisfying this
future obligation guarantees the satisfaction of Φ, hence the algorithm proceeds to
the next iteration. Next, it processes timestamp 10 ‘in the nick of time.’ The func-
tion enf+ computes Φ = fo2(10) ∧ fo30,103 (10) = ϕdel ∧ ♦[0,30](TP ∧ delete(2, 1, 1))

and calls enf+ on Φ using ts and b = >. It first decomposes Φ into the present obli-
gations (ϕ21, ∅,+) and (♦[0,30](TP∧delete(2, 1, 1)), ∅,+) and the future obligation
fo2. The first present obligation is immediately satisfied since no deletion_request
takes place. The second present obligation features a top-level ♦ labeled ♦C with
a non-[0, 0] interval, and can thus be satisfied by satisfying the future obligation
(fo30,103 , ∅,+) at the next time-point. Hence the enforcer emits the order NoCom
and propagates the future obligations X ′ = {fo2, fo30,103 } to the next time-point.
In the next iteration, the timestamp 11 is processed ‘in the nick of time.’ The goal
Φ = fo2(30) ∧ fo30,103 (11) = ϕdel ∧ ♦[0,29](TP ∧ delete(2, 1, 1)) is computed, and
similarly reduced to the future obligations X ′ = {fo2, fo29,113 }. Similar iterations
repeat until timestamp 40, when the goal becomes Φ = fo2(40) ∧ fo1,393 (40) =
ϕdel ∧♦[0,0](TP∧ delete(2, 1, 1)), which contains a [0, 0] interval. Being called with
b = > (in the nick of time), the enf+ function enters the ♦, generating the present
obligations (TP, ∅,+) and (delete(2, 1, 1), ∅,+) which it discharges by causing TP

and delete(2, 1, 1), respectively. Hence C = {TP, delete(2, 1, 1)} and the command
PCom({delete(2, 1, 1)}) is emitted, leading to (30, {delete(2, 1, 1)}) being inserted
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into the trace. The future obligations X ′ = {fo2} are propagated to the next
timestamp. The rest of the execution is as with σ1.

B Proofs of lemmata and theorems

B.1 Past-guarded fragment (Section 4)

We first observe that

Lemma 6. Let ϕ,ϕ′ ∈ MFOTL and i, i′ ∈ N. Assume that i′ ≤ i and ϕ′ is a
subformula of ϕ. Then ADi′(ϕ

′) ⊆ ADi(ϕ).

Proof. Since ϕ′ is a subformula of ϕ, we have cs(ϕ′) ⊆ cs(ϕ). Hence

ADi′(ϕ
′)

def.
= cs(ϕ′) ∪

(⋃
j≤i′
{d | d is one of dk in e(d1, . . . , da(e)) ∈ Dj}

)
⊆ cs(ϕ) ∪

(⋃
j≤i
{d | d is one of dk in e(d1, . . . , da(e)) ∈ Dj}

)
def.
= ADi(ϕ).

Lemma 1. For p ∈ {+,−}, if ` ϕ : PG(x)p, then x is past-guarded in pϕ, i.e.,
for any v, i such that if v, i � pϕ and x ∈ dom v, we have v(x) ∈ ADi(ϕ).

Proof. Fix x and σ. We prove

P (ϕ) ≡ ∀p, v, i. ` ϕ : PG(x)p =⇒ v, i � pϕ =⇒ x ∈ dom v =⇒ v(x) ∈ ADi(ϕ)

by structural induction on ϕ.

– If ϕ = e(t1, . . . , tn), then ` e(t1, . . . , tn) : PG(x)p implies p = +. We obtain
1 ≤ j ≤ n such that tj = x. Then v, i � ϕ implies (r, (v(t1), . . . , v(tk))) ∈ Di,
and v(x) = v(tj) ∈ ADi(ϕ).

– If ϕ = ¬ϕ′ and P (ϕ′) holds, then ` ϕ : PG(x)p yields ` ϕ′ : PG(x)−p. Since
v, i � p¬ϕ′ ⇐⇒ v, i � (−p)ϕ′, the assumption P (ϕ′) instantiated with −p, v,
and i immediately provides v(x) ∈ ADi(ϕ

′) ⊆ ADi(ϕ) using Lemma 6.
– If ϕ = ∃z. ϕ′ and P (ϕ′) holds, then C ` ϕ : PG(x)p yields ` ϕ′ : PG(x)p

and x 6= z. Since v, i � p(∃z. ϕ′) ⇐⇒ ∃d. v[z 7→ d], i � pϕ′, we obtain d
be such that v[z 7→ d], i � pϕ′ holds. The assumption P (ϕ′) instantiated
with p, v[z 7→ d], and i provides v[z 7→ d](x) ∈ ADi(ϕ

′). As x 6= z, we get
v(x) = v[z 7→ d](x) ∈ ADi(ϕ

′) ⊆ ADi(ϕ) using Lemma 6.
– If ϕ = ϕ1 ∧ ϕ2 and both P (ϕ1) and P (ϕ2) hold, there are three cases

depending on which typing rule is used to derive ` ϕ1 ∧ ϕ2 : PG(x)p.
• With ∧L+

PG, we get p = + and ` ϕ1 : PG(x)+. The fact that v, i � ϕ1 ∧ϕ2

implies v, i � ϕ1 allows us to instantiate P (ϕ1) with p, v, and i to get
v(x) ∈ ADi(ϕ1) ⊆ ADi(ϕ) using Lemma 6.

• With ∧R+

PG, the proof is similar using ϕ2 instead of ϕ1.
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• With ∧−PG, we get p = −, ` ϕ1 : PG(x)−, and ` ϕ1 : PG(x)−. Now,
observe that v, i � ¬(ϕ1∧ϕ2)⇐⇒ (v, i � ¬ϕ1 or v, i � ¬ϕ2). If v, i � ¬ϕ1

holds, we instantiate P (ϕ1) with −, v, and i to get v(x) ∈ ADi(ϕ1) ⊆
ADi(ϕ) using Lemma 6. If v, i � ¬ϕ2 holds, we similarly instantiate P (ϕ2)
to get v(x) ∈ ADi(ϕ2) ⊆ ADi(ϕ) using Lemma 6.

– If ϕ = ϕ1 SI ϕ2 and both P (ϕ1) and P (ϕ2) hold, there are again three cases
depending on which typing rule is used to derive ` ϕ1 SI ϕ2 : PG(x)p.

• With SL+
PG, we get p = +, 0 /∈ I, and ` ϕ1 : PG(x)+. Since v, i � ϕ1 SI ϕ2,

we obtain i′ ≤ i such that v, j � ϕ1 for all i′ < j ≤ i and τi − τ ′i ∈ I.
Since 0 /∈ I, we have i′ < i, hence v, i � ϕ1 holds. We can now instantiate
P (ϕ1) with +, v, and i to get v(x) ∈ ADi(ϕ1) ⊆ ADi(ϕ) using Lemma 6.

• With SR+
PG, we get p = + and ` ϕ2 : PG(x)+. Since v, i � ϕ1 SI ϕ2, we

obtain i′ ≤ i such that v, i′ � ϕ2. We instantiate P (ϕ2) with +, v, and i′
to get v(x) ∈ ADi′(ϕ1) ⊆ ADi(ϕ) using Lemma 6.

• With S−PG, we get p = −, 0 ∈ I, ` ϕ2 : PG(x)−. As 0 ∈ I, v, i �
¬(ϕ1 SI ϕ2) implies v, i � ¬ϕ2. We instantiate P (ϕ2) with −, v, and i to
get v(x) ∈ ADi(ϕ2) ⊆ ADi(ϕ) using Lemma 6.

– If ϕ = ϕ1 UI ϕ2 and both P (ϕ1) and P (ϕ2) hold, there are again three cases
depending on which typing rule is used to derive ` ϕ1 UI ϕ2 : PG(x)p.

• With UL+
PG, we get p = +, 0 /∈ I, and ` ϕ1 : PG(x)+. Since v, i � ϕ1UI ϕ2,

we obtain i′ ≥ i such that v, j � ϕ1 for all i ≤ j ≤ i′ and τ ′i − τi ∈ I.
Since 0 /∈ I, we have i′ > i, hence v, i � ϕ1 holds, and we can instantiate
P (ϕ1) with +, v, and i to get v(x) ∈ ADi(ϕ1) ⊆ ADi(ϕ) using Lemma 6.

• With ULR+
PG , we get p = +, ` ϕ1 : PG(x)+, and ` ϕ2 : PG(x)+. Since

v, i � ϕ1UI ϕ2, we obtain i′ ≥ i such that v, i′ � ϕ2 and, for all, i ≤ j < i′,
v, j � ϕ1. If i′ > i, we have v, i � ϕ1 and we conclude as in the previous
case. Otherwise, i′ = i and v, i � ϕ2 holds. We can then instantiate P (ϕ2)
with +, v, and i to get v(x) ∈ ADi(ϕ2) ⊆ ADi(ϕ) using Lemma 6.

• With U−PG, we get p = −, 0 ∈ I, ` ϕ2 : PG(x)−. As 0 ∈ I, v, i �
¬(ϕ1 UI ϕ2) implies v, i � ¬ϕ2. We instantiate P (ϕ2) with −, v, and i to
get v(x) ∈ ADi(ϕ2) ⊆ ADi(ϕ) using Lemma 6.

B.2 Auxiliary operators and approximated EMFOTL formulae

We use the following auxiliary operators:
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v, i �σ ϕ ∧Lω ψ iff ∃σ′. v, i �σ|..i·σ′ ϕ and v, i �σ ψ

v, i �σ ϕ ∧Rω ψ iff v, i �σ ϕ and ∃σ′. v, i �σ|..i·σ′ ψ

v, i �σ ϕ SLω−
I ψ iff ∃j ≤ i. ∃σ′. v, j �σ|..i·σ′ ψ with τi − τj ∈ I and ∀k ∈ [j + 1 . . . i]. ∃σ′. v, k �σ|..i·σ′ ϕ

v, i �σ ϕ SLω+
I ψ iff ∃j ≤ i. ∀σ′. v, j �σ|..i·σ′ ψ with τi − τj ∈ I and ∀k ∈ [j + 1 . . . i], σ′. v, k �σ|..i·σ′ ϕ

v, i �σ ϕ SRω
I ψ iff ∃j ≤ i. ∃σ′. v, j �σ|..i·σ′ ψ with τi − τj ∈ I and ∀k ∈ [j + 1 . . . i]. ∃σ′. v, k �σ|..i·σ′ ϕ

v, i �σ ϕ ULω−
I ψ iff ∃j ≥ i. v, j � ψ with τj − τi ∈ I and ∀k ∈ [i . . . j − 1]. ∃σ′. v, k �σ|..i·σ′ ϕ

v, i �σ ϕ ULω+
I ψ iff ∃j ≥ i. v, j � ψ with τj − τi ∈ I and ∀k ∈ [i . . . j − 1], σ′. v, k �σ|..i·σ′ ϕ

Fig. 12. Semantics of helper operators

Consider the following transformation on (typed) MFOTL formulae:

[r(t1, . . . , tn)]p = r(t1, . . . , tn) [¬ϕ]p = ¬[ϕ]−p
[∃x. ϕ]− = ∃x. [ϕ]− [∃x. ϕ]+ = [ϕ]+[x/0]

[ϕ ∧ ψ]+ = [ϕ]+ ∧ [ψ]+ [ϕ ∧SL ψ]− = [ϕ]− ∧Rω ψ

[ϕ ∧SR ψ]− = ϕ ∧Lω [ψ]− [#I ϕ]p = #I [ϕ]p

[ϕ SI ψ]+ = ϕ SLω+
I [ψ]+ [ϕ SSLR

I ψ]− = [ϕ]− SRω
I ψ

[ϕ SSRI ψ]− = ϕ SLω−
I [ψ]− [ϕ UCLR

I ψ]+ = [ϕ]+ UI [ψ]+

[ϕ UCR
I ψ]+ = ϕ ULω+

I [ψ]+ [ϕ UI ψ]− = ϕ ULω−
I [ψ]−

The transformed formulae soundly approximate the original formulae:

Lemma 4. For any ϕ such that Γ ` ϕ : {C}p, if v, i � p[ϕ]p holds, then v, i � pϕ
holds. In particular, L([ϕ]+) ⊆ L(ϕ).

Proof. By straightforward structural induction on the typing rules using the
definition of [·], and observing that

∀σ′. v, k �σ|..i·σ′ ϕ =⇒ v, k �σ ϕ

¬
(
∃σ′. v, k �σ|..i·σ′ ϕ

)
=⇒ v, k �σ ¬ϕ.

B.3 Satisfaction-checking under assumptions (Section 5.2)

We inductively define the set of future obligations of a (typed) formula ϕ at time-
point i and timestamp ts, denoted FO+

i,ts(ϕ), as

FO+
i,ts(ϕ) = {(fo, v, p) | (∀x ∈ fv(ϕ). v(x) ∈ ADi(ϕ)) ∧ (∀x /∈ fv(ϕ). v(x) = 0)

∧ (fo, p) ∈ FO+
ts(ϕ)}
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where

FOpts(¬ϕ1) = FO−pts (ϕ1)

FO+
ts(ϕ1 ∧ ϕ2) = FO+

ts(ϕ1) ∪ FO+
ts(ϕ2)

FO−ts(ϕ1 ∧SL ϕ2) = FO−ts(ϕ1)

FO−ts(ϕ1 ∧SR ϕ2) = FO−ts(ϕ2)

FOpts(∃x. ϕ1) = FOpts(ϕ1)

FOpts(#I ϕ1) = {(fots,#,I,ϕ1
, p)}

FO+
ts(ϕ1 SI ϕ2) = FO+

ts(ϕ2)

FO−ts(ϕ1 S
SL
I ϕ2) = FO−ts(ϕ1)

FO−ts(ϕ1 S
SR
I ϕ2) = FO−ts(ϕ2)

FO+
ts(ϕ1 U

CLR
I ϕ2) = FO+

ts(ϕ1) ∪ FO+
ts(ϕ2) ∪ {(fots,U,I,ϕ1,ϕ2 ,+)}

FO+
ts(ϕ1 U

CR
I ϕ2) = FO−ts(ϕ2) ∪ {(fots,U,I,ϕ1,ϕ2

,+)}
FO−ts(ϕ1 UI ϕ2) = FO−ts(ϕ2) ∪ {(fots,U,I,ϕ1,ϕ2

,−)}.

Note that the above sets are always finite since ADi(ϕ) and fv(ϕ) are finite, too.
We prove

Lemma 2. The proof system of [49] extended with the rules from Figure 6 yields
a decision procedure Sat that satisfies (?).

by showing the stronger lemma

Lemma 7. The proof system of [49] extended with the rules from Figure 6 yields
a decision procedure Sat that satisfies

Sat(v, ϕ, σ′, X)

(??)
=⇒

(
∀ts ∈ N, D ∈ DB, σ′′ ∈ Tω. (∀(ξ, v′, p′) ∈ X. v′, |σ′| �σ′·(ts,D)·σ′′TP p

′ξ(ts))

=⇒ v, |σ′| − 1 �
σ′·(ts,D)·σ′′TP [ϕ]+

)
.

Proof. First, note that for all v′, σ′, ts, d, ts′, D′, σ′′, p′, τ , I, ϕ1, and ϕ2:

v′, |σ′|+ 1 �
σ′·(ts,D)·(ts′,D′)·σ′′TP p

′foτ,#,I,ϕ1
(ts′)

⇐⇒ v′, |σ′|+ 1 �
σ′·(ts,D)·(ts′,D′)·σ′′TP p

′#I ϕ1

and v′, |σ′|+ 1 �
σ′·(ts,D)·(ts′,D′)·σ′′TP p

′foτ,U,I,ϕ1,ϕ2(ts
′)

⇐⇒ v′, |σ′|+ 1 �
σ′·(ts,D)·(ts′,D′)·σ′′TP p

′(ϕ1 UI ϕ2)

by definition of the fo and •TP. The conclusion follows by induction on ϕ, using
the definition of [•]+ and the standard unrolling rules for # and U.

Lemma 3. Whenever X ⊇ FO+
|σ|,τ|σ|(ϕ), the converse of (?) also holds for Sat

constructed as in Lemma 2.
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Proof. By structural induction on the formula ϕ, applying the additional rules
greedily. The premisses of the additional rules that depend on future obligations
are always satisfied, since X ⊇ FO+. The parts of the proof that remain to be
discharged using rules from the original proof system do not depend on the future.
The conclusion follows from the completeness of the proof system in [48].

B.4 Soundness (Section 5.4)

For safety properties, we have the following characterization of soundness:

Lemma 8. An enforcer E is sound with respect to a safety formula ϕ iff for any
σ ∈ Tω and any prefix σ′ of E(σ), there exists σ′′ such that σ′ · σ′′ ∈ P .

Proof. Straightforward by the definition of safety.

In the following, we write σ � σ′, or equivalenty, σ′ � σ, when σ ∈ Tf , σ′ ∈ T,
and σ is a prefix of σ′, i.e., there exists σ′′ ∈ T such that σ′ = σ · σ′′.

Lemma 9. For any ϕ such that Γ ` ϕ : C, the formula [ϕ]+ is a safety formula.

Proof. We prove, for all ϕ:

P (ϕ) ≡ ∀p ∈ {+,−}, σ0 ∈ Tf \ {ε}, v ∈ V→ D, σ ∈ Tω.
Γ ` ϕ : {C}p ∧ v, |σ0| − 1 �σ0·σ (−p)[ϕ]p
=⇒ ∃σ′ � σ. ∀σ′′ � σ′. v, |σ0| − 1 �σ0·σ′′ (−p)[ϕ]p

by induction on ϕ. Let ϕ, p, σ0 6= ε, v, σ such that Γ ` p : {C}p, v, |σ0| − 1 �σ0·σ

(−p)[ϕ]p. For any σ′′ ∈ T, denote σ̂′′ := σ0 · σ′′. Let i := |σ0| − 1.

– If ϕ = >, ϕ = ⊥, or ϕ = e(t1, . . . , tk), then ϕ is non-temporal and [ϕ]p = ϕ,
and hence setting σ′ = σ guarantees ∀σ′′ � σ′. v, |σ0| �σ̂′′ (−p)[ϕ]p.

– If ϕ = ¬ϕ1, assume P (ϕ1). Since Γ ` ϕ : {C}p, then Γ ` ϕ1 : {C}−p
(using rules ¬C and ¬S). From v, i �σ̂ (−p)[ϕ]p and [ϕ]p = ¬[ϕ1]−p we get
v, i �σ̂ p[ϕ1]−p and obtain σ′ � σ such that ∀σ′′ � σ′. v, i �

σ̂′′
p[ϕ1]−p by

P (ϕ1). Hence, ∀σ′′ � σ′. v, i �σ̂′′ (−p)[ϕ]p.
– If ϕ = ∃x. ϕ1, assume P (ϕ1); there are two cases:
• If p = +, then Γ ` ϕ1 : C using rule ∃C. Furthermore, [ϕ]+ = [ϕ1]+[x/0].

From v, i �σ̂ ¬[ϕ]+ we get v[x 7→ 0], i �σ̂ ¬[ϕ1]+ and obtain a finite σ′ � σ
such that ∀σ′′ � σ′. v[x 7→ 0], i �

σ̂′′
¬[ϕ1]+ ⇐⇒ ∀σ′ � σ′. v, i �σ̂′′ ¬[ϕ]+.

• If p = −, then Γ ` ϕ : S using rule ∃S and [∃x. ϕ]− = ∃x. [ϕ1]−. Then

v, i �σ̂ [ϕ]−
def. �⇐⇒ ∃d. v[x := d], i �σ̂ [ϕ1]−
P (ϕ1)
=⇒ ∃d. ∃σ′ � σ.∀σ′′ � σ′. v[x := d], i �

σ̂′′
[ϕ1]−

=⇒ ∃σ′ � σ. ∀σ′′ � σ′. ∃d. v[x := d], i �
σ̂′′

[ϕ1]−
def. �⇐⇒ ∃σ′ � σ. ∀σ′′ � σ′. v, i �

σ̂′′
[ϕ]−.
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– If ϕ = ϕ1 ∧ ϕ2, we have P (ϕ1) and P (ϕ2); there are two cases:

• If p = +, then Γ ` ϕ1 : C and Γ ` ϕ2 : C by rule ∧C and [ϕ1 ∧ ϕ2]+ =
[ϕ1]+ ∧ [ϕ2]+. Then

v, i �σ̂ ¬[ϕ]+
def. �⇐⇒ v, i �σ̂ ¬[ϕ1]+ or v, i �σ̂, ¬[ϕ2]+

P (ϕ1),P (ϕ2)
=⇒ (

∃σ′1 � σ. ∀σ′′ � σ′1. v, i �σ̂′′ ¬[ϕ1]+
)

or
(
∃σ′2 � σ. ∀σ′′ � σ′2. v, i �σ̂′′ ¬[ϕ2]+

)
(?)
=⇒ ∃σ′ � σ. ∀σ′′ � σ′. (v, i �σ̂ ¬[ϕ1]+ or v, i �σ̂ ¬[ϕ2]+)

def. �⇐⇒ ∃σ′ � σ. ∀σ′′ � σ′. v, i �
σ̂′′
¬[ϕ]+

where (?) is obtained by choosing as witness for σ′ the shortest of the
witnesses for σ′1 and σ′2.

• If p = −, assume w.l.o.g. that rule ∧SL is applied (the case of ∧SR is similar
up to symmetry). Then Γ ` ϕ1 : S by rule ∧SL and [ϕ]− = [ϕ1]

− ∧Rω ϕ2.
We have, for arbitrary σ,

v, i �σ̂ [ϕ]−
def. �⇐⇒ v, i �σ̂ [ϕ1]− and ∃σ′2. v, i �σ̂′2 ϕ2

P (ϕ1)
=⇒ ∃σ′1 � σ. ∀σ′′ � σ′1. v, i �σ̂′′ [ϕ1]− and ∃σ′2. v, i �σ̂′2 ϕ2

=⇒ ∃σ′ � σ. ∀σ′′ � σ′. (v, i �
σ̂′′

[ϕ1]− and ∃σ′2. v, i �σ̂′2 ϕ2)

def. �
=⇒ ∃σ′ � σ. ∀σ′′ � σ′. v, i �

σ̂′′
[ϕ]−.

– If ϕ = #I ϕ1, we have P (ϕ1). Let σ = (τ ′, D′) · σ1; there are two cases:

• If p = +, then Γ ` ϕ1 : C and I = [0,∞) by rule #C and [#I ϕ1]+ =
#I [ϕ1]+. We have

v, i �σ̂ ¬[ϕ]+
def. �⇐⇒ v, i+ 1 �σ0·〈(τ ′,D′)〉·σ1

¬[ϕ1]+

P (ϕ1)
=⇒ ∃σ′1 � σ1.∀σ′′ � σ′1. v, i+ 1 �σ0·〈(τ ′,D′)〉·σ′′ ¬[ϕ1]+

(?)
=⇒ ∃σ′ � σ. ∀σ′′ � σ′. v, i+ 1 �σ0·σ′′ ¬[ϕ1]+

def. �⇐⇒ ∃σ′ � σ. ∀σ′′ � σ′. v, i �
σ̂′′
¬[ϕ]+

where (?) is obtained by choosing as witness for σ′ the prefix σ′1 · (τ ′, D′)
where σ′1 is a witness of the LHS.
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• If p = −, then Γ ` ϕ1 : S by rule #S and [#I ϕ1]− = #I [ϕ1]−. We have

v, i �σ̂ [ϕ]−
def. �⇐⇒ v, i+ 1 �σ0·σ1 [ϕ1]− and τ ′ − τ ∈ I
P (ϕ1)
=⇒ ∃σ′1 � σ1.∀σ′′ � σ′1. v, i+ 1 �σ0·〈(τ ′,D′)〉·σ′′ [ϕ1]−

and τ ′ − τ ∈ I
(?)
=⇒ ∃σ′ � σ. ∀σ′′ � σ′. v, i+ 1 �σ0·σ′′ [ϕ1]− and τ ′ − τ ∈ I

def. �⇐⇒ ∃σ′ � σ. ∀σ′′ � σ′. v, i �
σ̂′′

[ϕ]−

where (?) is obtained as in the previous case.
– If ϕ = ϕ1 SI ϕ2, we have P (ϕ1) and P (ϕ2) for all j. There are three cases:
• If p = +, then Γ ` ϕ2 : C and 0 ∈ I by rule SC, and [ϕ]+ = ϕ1S

Lω+
I [ϕ2]+.

We have

v, i �σ̂ ¬[ϕ]+
def. �⇐⇒∀j ≤ i. τi − τj ∈ I ⇒(

∃σ′1. v, j �σ|..i·σ′1 ¬[ϕ2]+

or ∃k ∈ [j + 1..i]. v, k �σ̂|..i·σ′1 ¬ϕ1

)
P (ϕ2)
=⇒ ∀j ≤ i. τi − τj ∈ I ⇒(

∃σ′2 � σ. ∀σ′′ � σ′2. v, j �σ̂′′ ¬[ϕ2]+

or ∃k ∈ [j + 1..i], σ′1. v, k �σ̂′1
¬ϕ1

)
=⇒∃σ′ � σ. ∀j ≤ i. τi − τj ∈ I ⇒(

∀σ′′ � σ′2. v, j �σ̂′′ ¬[ϕ2]+

or ∃k ∈ [j + 1..i], σ′1. v, k �σ̂′1
¬ϕ1

)
def. �
=⇒∃σ′ � σ. ∀σ′′ � σ′. v, i �

σ̂′′
¬[ϕ]+.

• If p = − and either SSL or SSLR, the proof is similar, using the semantics
of ϕ1 S

Lω− ϕ2 or ϕ1 S
Rω− ϕ2.

– If ϕ = ϕ1 U[a,b] ϕ2, assume P (ϕ1) and P (ϕ2). There are again three cases:
• If p = + and rule UCLR is used, then Γ ` ϕ1 : C, Γ ` ϕ2 : C, and b 6=∞.

Furthermore, [ϕ]+ = [ϕ1]+ UI [ϕ2]+. We have:

v, i �σ̂ ¬[ϕ]+
def. �⇐⇒∀j ≥ i. τj − τi ∈ I ⇒

(v, j �σ̂ ¬[ϕ2]+ or ∃k ∈ [i..j − 1]. v, k �σ̂ ¬[ϕ1]+)

P (ϕ1),P (ϕ2)
=⇒ ∀j ≥ i. τj − τi ∈ I ⇒(

∃σ′2 � σ. ∀σ′′ � σ′2. v, j �σ̂′′ ¬[ϕ2]+

or ∃k ∈ [i..j − 1].∃σ′1 � σ. ∀σ′′ � σ′1. v, k �σ̂′′ ¬[ϕ1]+
)

(?)
=⇒∃σ′ � σ. ∀σ′′ � σ′2.∀j ≥ i. τj − τi ∈ I ⇒(

v, j �
σ̂′′
¬[ϕ2]+ or ∃k ∈ [i..j − 1]. v, k �

σ̂′′
¬[ϕ1]+

)
def. �
=⇒∃σ′ � σ. ∀σ′′ � σ′2. v, i �σ̂′′ ¬[ϕ]+
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where (?) is obtained by choosing as witness for σ′ the longest of a witness
for σ′2 and either a witness for σ′1 for each value of j such that τj − τi ∈ I.
The progress property of the trace σ guarantees that the set of such
indices j is finite, and hence the witness for σ′ is finite.

• If p = + and rule UCR is used, the proof is similar, using the semantics
of ϕ1 U

Lω+ ϕ2.
• If p = − and rule US is used, then Γ ` ϕ1 : S. Furthermore, [ϕ]− =
[ϕ1]− URω ϕ2. We have:

v, i �σ̂ [ϕ]−
def. �⇐⇒∃j ≥ i.

(
τj − τi ∈ I and ∃σ′2. v, j �σ̂|..i·σ′2 ϕ2

and ∀k ∈ [i..j − 1]. v, k �σ̂ [ϕ1]−)

P (ϕ1)
=⇒ ∃j ≥ i.

(
τj − τi ∈ I and ∃σ′2. v, j �σ̂′2 ϕ2

and ∀k ∈ [i..j − 1].∃σ′1 � σ. ∀σ′′ � σ′1. v, k �σ̂′′ [ϕ1]−
)

(?)
=⇒∃σ′ � σ. ∀σ′′ � σ′.∃j ≥ i.(

τj − τi ∈ I and ∃σ′2. v, j �σ̂′2 ϕ2

and ∀k ∈ [i..j − 1]. v, k �
σ̂′′

[ϕ1]−
)

def. �
=⇒∃σ′ � σ. ∀σ′′ � σ′2. v, i �σ̂′′ [ϕ]−.

where (?) is obtained by choosing as witness for σ′ the longest of the
witnesses for σ′1 for each value of j such that τj − τi ∈ I. The progress
property of the trace σ guarantees that the set of such indices j is finite,
and hence the witness for σ′ is also finite.

Given any trace 〈(τ,D)〉 · σ ∈ Tω, we can now use P (ϕ) instantiated with p = +,
σ0 = 〈(τ,D)〉, and σ to obtain

Γ ` ϕ : C ∧ v, 0 �〈(τ,D)〉·σ ¬[ϕ]p =⇒ ∃σ′ � σ.
(
∀σ′′ � σ′. v, i �(τ,D)·σ′′ ¬[ϕ]p

)
,

which implies

∀σ ∈ Tω. Γ ` ϕ : C ∧ σ /∈ L(ϕ) =⇒ ∃σ′ � σ. ∀σ′′ � σ′. σ′′ /∈ L(ϕ),

i.e., ϕ is a safety formula.

Having proved in Lemma 4 that the transformed formulae soundly approxi-
mate the original formulae, we will use the following weakening of (??) where
the transformed future obligations are assumed to be satisfied.

Sat(v, ϕ, σ′, X)

(???)
=⇒

(
∀ts ∈ N, D ∈ DB, σ′′ ∈ Tω. (∀(ξ, v′, p′) ∈ X. v′, |σ′| �σ′·(ts,D)·σ′′TP p

′[ξ(ts)]p′)

=⇒ v, |σ′| − 1 �
σ′·(ts,D)·σ′′TP [ϕ]+

)
.
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Lemma 10. Let σ ∈ Tf , (τ ′, D′) · σ′ ∈ Tω, τ ∈ N such that τ ′ ≥ τ , and
enfpτ,b(ϕ, σ · (τ,D), X ′, v) = (S,C,X) (in particular, enfpτ,b terminates on these
inputs). Assume further that the following hold:

P1 ≡ Γ ` ϕ : {C}p;
P2 ≡ τ ′ > τ =⇒ b;
P3 ≡ ∀(ξ, v′, p′) ∈ X. v′, |σ|+ 1 �

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP p
′[ξ(τ ′)]p′

Then Q ≡ v, |σ| �
σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP p[ϕ]p holds.

Proof. Fix Γ,X ′, σ, σ′, τ, τ ′, D′. We prove

P (ϕ)

≡ ∀D, v, b, S, C,X, p. enfpτ,b(ϕ, σ · (τ,D), X ′, v) = (S,C,X)

∧ P1(Γ, ϕ, p) ∧ P2(b) ∧ P3(X,D, S,C) =⇒ Q(v,D, S,C, p, ϕ)

by structural induction on ϕ.

– If ϕ = ⊥, then P1 yields p = − (rule ⊥S). In this case, Q is simply
v, |σ| �

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP −⊥ ≡ >, which always holds.

– If ϕ = >, then P1 yields p = + (rule >C). In this case, Q is simply
v, |σ| �

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP >, which always holds.

– If ϕ = e(t1, . . . , tk), we know by P1 that either p = −, e ∈ S, and Γ (e) = S
(rule ES); or p = +, e ∈ C, and Γ (e) = C (rule EC). Consider the former case.
By definition of enf−, we have S = {(r, (v(t1), . . . , v(tn)))}, C = ∅, X = ∅.
Hence (r, (v(t1), . . . , v(tn))) /∈ D\S∪C, andQ ≡ v, |σ| �

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP

−r(t1, . . . , tn) holds. The other case is similar using the definition of enf+.
– If ϕ = ¬ϕ′, assume P (ϕ′). We know by P1 (rules ¬C and ¬S) that Γ `
ϕ′ : {C}−p ≡ P1(Γ, ϕ

′,−p). Observe that P2 and P3 do not depend on
ϕ. Hence, we can use P (ϕ′) to show Q(v,D, S,C,−p, ϕ′), which is exactly
Q(v,D, S,C, p, ϕ) by the semantics of ¬ and the definition of [·].

– If ϕ = ∃x. ϕ′, assume P (ϕ′); there are two cases:

• If p = +, then P1(Γ, ϕ, p) (rule ∃C) yields Γ ` ϕ′ : C ≡ P1(Γ, ϕ
′, p).

Furthermore, enf+τ,b(ϕ, σ,X, v) = enf+τ,b(ϕ
′, σ,X, v[x 7→ 0]). Observe that

P2 and P3 do not depend on ϕ and v. Hence, we can use P (ϕ′) to
show Q(v[x 7→ 0], D, S, C, p, ϕ′), which implies Q(v,D, S,C, p, ϕ) by the
semantics of ∃.

• If p = −, then P1(Γ, ϕ, p) (rule ∃S) yields Γ ` ϕ′ : C ≡ P1(Γ, ϕ
′, p) and

` ϕ′ : PG(x)+. Furthermore, enf−τ,b(ϕ, σ,X, v) = fp(σ,X, enf−ex,ϕ′,v,τ,b).
Let σ1 = σ·(τ,D\S∪C). Since enf−τ,b terminates, the fixpoint computation
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also does, and we have

∀d ∈ AD|σ1|−1(ϕ
′).Sat(v[x 7→ d],¬ϕ′, σ1, X)

(???)
=⇒∀d ∈ AD|σ1|−1(ϕ

′). (∀(ξ, v′, p′) ∈ X. v′, |σ1| �σ1·(τ ′,D)·σ′TP p
′[ξ(τ ′)]p′)

=⇒ v[x 7→ d], |σ1| − 1 �
σ1·(τ ′,D′)·σ′

TP ¬[ϕ′]−
Lm. 1
=⇒∀d ∈ D. (∀(ξ, v′, p′) ∈ X. v′, |σ1| �σ1·(τ ′,D′)·σ′

TP p′[ξ(τ ′)]p′)

=⇒ v[x 7→ d], |σ1| − 1 �
σ1·(τ ′,D′)·σ′

TP ¬[ϕ′]−
def. �
=⇒

(
(∀(ξ, v′, p′) ∈ X. v′, |σ1| �σ1·(τ ′,D′)·σ′

TP p′[ξ(τ ′)]p′)

=⇒ v, |σ1| − 1 �
σ1·(τ ′,D′)·σ′

TP ¬[ϕ]−
)

⇐⇒(P3 =⇒ Q)

which concludes the proof.
– If ϕ = ϕ1 ∧ ϕ2, assume P (ϕ1) and P (ϕ2); there are two cases:
• If p = −, then P1(Γ, ϕ, p) yields either P1(Γ, ϕ1, p) (rule ∧SL) or P1(Γ, ϕ2, p)
(rule ∧SR). W.l.o.g., consider the former case (the latter case is sim-
ilar exchanging the role of ϕ1 and ϕ2). We have enf+τ,b(ϕ, σ,X, v) =

enf+τ,b(ϕ1, σ,X, v). Observe that P2 and P3 do not depend on ϕ and
v. Hence we get Q(v,D, S,C, p, ϕ1), which implies Q(v,D, S,C, p, ϕ) by
the semantics of ∧Rω and [ϕ ∧SL ψ]− = [ϕ1]− ∧Rω ϕ2: the conjunction
[ϕ1]− ∧Rω ϕ2 is false at i if [ϕ1]− is false at i.

• If p = +, then P1(Γ, ϕ, p) (rule ∧C) yields Γ ` ϕ1 : C ≡ P1(Γ, ϕ1, p)
and Γ ` ϕ2 : C ≡ P1(Γ, ϕ2, p) . Furthermore, enf+τ,b(ϕ, σ,X, v) =

fp(σ,X, enf+and,ϕ1,ϕ2,v,τ,b
). Let σ1 = σ · (τ,D \ S ∪ C). Since enf+ termi-

nates, the fixpoint computation also does, and we have

Sat(v, ϕ1, σ1, X) ∧ Sat(v, ϕ2, σ1, X)

(???)
=⇒

(
∀(ξ, v′, p′) ∈ X. v′, |σ1| �σ1·(τ,D′)·σ′

TP p′[ξ(τ)′]p′)

=⇒ v, |σ1| − 1 �
σ1·(τ ′,D′)·σ′

TP [ϕ1]+ ∧ v, |σ1| − 1 �
σ1·(τ ′,D′)·σ′

TP [ϕ2]+

def. �⇐⇒
(
∀(ξ, v′, p′) ∈ X. v′, |σ1| �σ1·(τ ′,D′)·σ′

TP p′[ξ(τ ′)]p′)

=⇒ v, |σ1| − 1 �
σ1·(τ ′,D′)·σ′

TP
,+

[ϕ]+

⇐⇒(P3 =⇒ Q)

which concludes the proof using [ϕ1 ∧ ϕ2]+ = [ϕ1]+ ∧ [ϕ2]+.
– If ϕ = #I ϕ′, assume P (ϕ′); there are two cases:
• If p = −, then by P1 (rule #S) we get Γ ` ϕ : S. By definition of enf−,
we have S = C = ∅ and X = {(foτ,#,I,ϕ′ , v,−)}. By definition of •TP and
foτ,#,I,ϕ′ , then if τ ′ − τ ∈ I, P3 yields v, |σ|+ 1 �

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP

¬[ϕ′]− which implies Q ≡ v, |σ| �
σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP ¬#I [ϕ

′]−. If
τ ′ − τ /∈ I, the semantics of #I similarly guarantees Q.
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• If p = +, then by P1 (rule #C) we get Γ ` ϕ : C. By definition of enf+,
we have S = C = ∅ and X = {(foτ,#,I,ϕ′ , v,+)}. Then P3 yields v, |σ|+
1 �

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP,+ [ϕ′]+, which impliesQ ≡ v, |σ| �
σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP,+

#[ϕ′]+.
– If ϕ = ϕ1 SI ϕ2, assume P (ϕ1) and P (ϕ2); there are three cases:
• If p = +, then by P1 (rule SC) we get 0 ∈ I, Γ ` ϕ2 : C. We have
enf+τ,b(ϕ, σ,X, v) = enf+τ,b(ϕ2, σ,X, v); as before, P2 and P3 are inde-
pendent of ϕ and v. Hence we get Q(v,D, S,C, p, ϕ2), which implies
Q(v,D, S,C, p, ϕ) using the semantics of SLω+

I , the equation [ϕ1SIϕ2]+ =
ϕ1 S

Lω+
I [ϕ2]+, and the fact that 0 ∈ I.

• If p = − and SSL is used, we have 0 /∈ I and Γ ` ϕ1 : C by P1. Further,
enf−τ,b(ϕ, σ,X, v) = enf−τ,b(ϕ1, σ,X, v), and P2 and P3 are independent
of ϕ and v. Hence Q(v,D, S,C, p, ϕ2), which implies Q(v,D, S,C, p, ϕ)
using the semantics of SLω−

I , the equation [ϕ1 SI ϕ2]+ = ϕ1 S
Lω−
I [ϕ2]+,

and the fact that 0 /∈ I.
• If p = − and SSLR is used, we have 0 ∈ I, Γ ` ϕ1 : C, and Γ ` ϕ2 : C by
P1. Further,

enf−τ,b(ϕ, σ,X, v) = fp(σ,X, enf+and,¬(ϕ1∧SL(ϕ1SIϕ2)),¬ϕ2,v,τ,b
)

whereby Γ ` ¬ϕ2 : C and Γ ` ¬(ϕ1 ∧SL (ϕ1 SI ϕ2)) : C. The same proof
as for ∧ and p = + above shows Q(v,D, S,C,−p,¬ϕ2∧¬(ϕ1∧(ϕ1SI ϕ2))
since, when 0 ∈ I, we have

¬ (ϕ1 SI ϕ2) ≡ ¬ϕ2 ∧ ¬ (ϕ1 ∧ (ϕ1 SI ϕ2))

Hence Q(v,D, S,C, p, ϕ) holds.
– If ϕ = ϕ1 UI ϕ2, assume P (ϕ1) and P (ϕ2); there are three cases:
• If p = +, then by P1 (rule UC) we get Γ ` ϕ1 : C and Γ ` ϕ2 : C. If I =

[0, 0] and b = >, we have enf+τ,b(ϕ, σ,X, v) = enf+τ,b(ϕ2, σ,X, v); as before,
P2 and P3 are independent of ϕ and v. Hence we get Q(v,D, S,C, p, ϕ2),
which implies Q(v,D, S,C, p, ϕ) by the semantics of [ϕ1]+ UI [ϕ2]+ =
[ϕ1 UI ϕ2]+ and the fact that 0 ∈ I. Otherwise, enf+τ,b(ϕ, σ,X, v) =

enf+τ,b(ϕ1, σ,X, v, b)d (∅, ∅, {(foτ,U,I,ϕ1,ϕ2 , v,+)}. Using P3 and the defini-
tion of •TP, we get v, |σ|+1 �

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP [ϕ1]+ UI−(τ ′−τ) [ϕ2]+.
Using P (ϕ1), we also get Q(v,D, S,C, p, ϕ1). Together, these two facts
imply

v, |σ| �
σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP [ϕ1]+ ∧#

(
[ϕ1]+ UI−(τ ′−τ) [ϕ2]+

)
=⇒ v, |σ| �

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP [ϕ1]+ UI [ϕ2]+ ≡ Q.

• If p = + and UCR is used, the proof is similar to the previous case.
• If p = − and USL is used, we have 0 /∈ I and Γ ` ϕ1 : C by P1. Further,
enf−τ,b(ϕ, σ,X, v) = enf−τ,b(ϕ1, σ,X, v), and P2 and P3 are independent
of ϕ and v. Hence Q(v,D, S,C, p, ϕ1), which implies Q(v,D, S,C, p, ϕ)
using the semantics of URω−

I , the equation [ϕ1 UI ϕ2]− = [ϕ1]− URω−
I ϕ2,

and the fact that 0 /∈ I.
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Lemma 11. When Γ ` ϕ : {C}, for all p, σ,X, τ, v, b, any call to enfpτ,b(ϕ, σ,X, v)
terminates.

Proof. By structural induction on ϕ. The only non-trivial cases are those that
lead to a call to fp: ϕ = ϕ1 ∧ϕ2 for p = −, and ϕ = ∃x. ϕ1, ϕ1 S

SLR
I ϕ2, ϕ1 U

S
I ϕ2

for p = +.
In all four cases, a similar proof is obtained by combining three facts:

(1) At each iteration of the loop in fp, |S|+ |C|+ |X| grows strictly.
(2) Any event added to S or C by any call to enf− or enf+ takes its arguments

in AD|σ|(ϕ), which is finite; thus |S|+ |C| ≤ (|S|+ |C|)|AD(σ)|max ι(E) <∞.
(3) Any triple added toX is in FO+

|σ|,τ (ϕ), which is also finite, and hence |X| <∞.

Therefore every call fp terminates, and thus enfpτ,b terminates, too.

Lemma 12. Let ϕ such that Γ ` ϕ : {C}p, σ ∈ Tf , v a valuation such that
v(fv(ϕ)) ⊆ AD|σ|(ϕ). Then there exists σ′ such that v, |σ| �σ·σ′ p[ϕ]p.

Proof. Construct

∆ := AD|σ|(ϕ)

D :=
⋃

e∈Γ−1(C)

{(e, (d1, . . . , da(e))) | (d1, . . . , da(e)) ∈ ∆a(e)}

σ′ := 〈(τ ′, D), (τ ′ + 1, D), (τ ′ + 2, D), . . .〉 .

We show

P (ϕ)

≡ ∀v, p, i ≥ |σ|. Γ ` ϕ : {C}p ∧ v(fv(ϕ)) ⊆ ADi(ϕ) =⇒ v, i �σ·σ′ p[ϕ]p.

by structural induction on ϕ. Let ϕ such that Γ ` ϕ : {C}p, v(fv(ϕ)) ⊆ ADi(ϕ).

– If ϕ = ⊥ and p = − or ϕ = > and p = +, the result is trivial.
– If ϕ = e(t1, . . . , tk) with e ∈ S and p = −, then the typing guarantees
Γ (e) = S, and therefore e /∈ Γ−1(C) and (e, (v(t1), . . . , v(tk))) /∈ D, yielding
v, i �σ·σ′ ¬[ϕ]−.

– If ϕ = e(t1, . . . , tk) with e ∈ C and p = +, then the typing guarantees
Γ (e) = C. Furthermore, v(tj) ∈ AD|σ|(ϕ) = ∆ for every j ∈ [1..a(e)] by our
assumption. Therefore (e, (v(t1), . . . , v(tk))) ∈ D, yielding v, i �σ·σ′ [ϕ]+.

– If ϕ = ¬ϕ1, assume P (ϕ1). The typing of ϕ yields Γ ` ϕ1 : {C}−p. By P (ϕ1),
we get v, i �σ·σ′ (−p)[ϕ1]−p, and hence v, i �σ·σ′ p[ϕ]p.

– If ϕ = ∃x. ϕ1, assume P (ϕ1); there are two cases:
• If p = +, the typing of ϕ yields Γ ` ϕ1 : C. By P (ϕ1) with v′ = v[x 7→ 0]
and the fact that 0 ∈ ADi(ϕ), we get v′, i �σ·σ′ [ϕ1]+. Hence v, i �σ·σ′
[ϕ]+[x/0] and v, i �σ·σ′ [ϕ]+.

• If p = −, the typing of ϕ guarantees Γ ` ϕ1 : S and ` ϕ1 : PG(x)+.
Let d ∈ ADi(ϕ) and vd = v[x 7→ d]. By P (ϕ1) with v′, we get v′, i �σ·σ′
¬[ϕ1]−. As this holds for any d in ADi(ϕ), we get v, i �σ·σ′ ¬[ϕ]−.
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– If ϕ = ϕ1 ∧ ϕ2, assume P (ϕ1) and P (ϕ2); there are three cases:
• If p = +, the typing of ϕ yields Γ ` ϕ1 : C and Γ ` ϕ2 : C. By
P (ϕ1) and P (ϕ2), we get v, i �σ·σ′ [ϕ1]+ and v, i �σ·σ′ [ϕ2]+, and hence
v, i �σ·σ′ [ϕ]+.

• If p = − and ϕ is typed using ∧SL, then Γ ` ϕ1 : S. By P (ϕ1), we get
v, i �σ·σ′ ¬[ϕ1]−, and hence v, i �σ·σ′ ¬[ϕ]−.

• If p = − and ϕ is typed using ∧SR, then Γ ` ϕ2 : S. By P (ϕ2), we get
v, i �σ·σ′ ¬[ϕ2]−, and hence v, i �σ·σ′ ¬[ϕ]−.

– If ϕ = #I ϕ1, assume P (ϕ1); there are two cases:
• If p = +, the typing of ϕ yields I = [0..∞) and Γ ` ϕ1 : C. By P (ϕ1)
with v and i+ 1, we get v, i+ 1 �σ·σ′ [ϕ1]+, and hence v, i �σ·σ′ [ϕ]+.
• If p = −, the typing of ϕ yields Γ ` ϕ1 : S. By P (ϕ1) with v and i+ 1,
we get v, i+ 1 �σ·σ′ ¬[ϕ1]−, and hence v, i �σ·σ′ ¬[ϕ]−.

– If ϕ = ϕ SI ψ, assume P (ϕ1) and P (ϕ2); there are three cases:
• If p = +, the typing of ϕ yields 0 ∈ I and Γ ` ϕ2 : C. By P (ϕ2), we get
v, i �σ·σ′ [ϕ2]+, and hence v, i �σ·σ′ [ϕ]+ since 0 ∈ I.

• If p = − and ϕ is typed using SSL, then Γ ` ϕ1 : S and 0 /∈ I. By P (ϕ1),
we get v, i �σ·σ′ ¬[ϕ1]−, and hence v, i �σ·σ′ ¬[ϕ]− since 0 /∈ I.
• If p = − and ϕ is typed using SSLR, then Γ ` ϕ2 : S, and 0 ∈ I. By
P (ϕ2), we get v, i �σ·σ′ ¬[ϕ2]−, and hence v, i �σ·σ′ ¬[ϕ]−.

– If ϕ = ϕ UI ψ, assume P (ϕ1) and P (ϕ2); there are three cases:
• If p = +, the typing of ϕ gives I = [a, b] with b < ∞, Γ ` ϕ1 : C, and
Γ ` ϕ2 : C. Let δ ∈ I and k = i+δ. By P (ϕ2), we have v, k �σ·σ′ [ϕ2]p. By
P (ϕ1), we also have ∀j ∈ [i..k− 1]. v, j �σ·σ′ [ϕ1]+. Hence v, i �σ·σ′ [ϕ]+.

• If p = − and ϕ is typed using USL, then Γ ` ϕ1 : S and 0 /∈ I. By P (ϕ1),
we get v, i �σ·σ′ ¬[ϕ1]−, and hence v, i �σ·σ′ ¬[ϕ]− since 0 /∈ I.
• If p = − and ϕ is typed using US, then Γ ` ϕ2 : S. By P (ϕ2), we get
∀j ∈ I + i. v, j �σ·σ′ ¬[ϕ2]. Hence v, i �σ·σ′,− [ϕ]−.

For σ = ε and p = +, we get as a corollary:

Lemma 13. For any ϕ ∈ EMFOTL, there exists σ such that σ ∈ L([ϕ]+).

Our choice of σ′ in the proof of Lemma 12 depends on Γ and σ, but not on the
specific formula ϕ and valuation v. We thus obtain the following generalization:

Lemma 14. Fix σ ∈ Tf , τ ′ ≥ lts(σ), and Γ . Let X be a set of triples (ξ, v, p′)
all satisfying Γ ` ξ(τ ′) : {C}p′ and v(fv(ξ(τ ′))) ⊆ AD|σ|(ϕ). Then there exists σ′
such that fts(σ′) = τ ′ and for all (ξ, v, p′) ∈ X, v, |σ| �σ·σ′ p′[ξ(τ ′)]p′ .

Proof. As in Lemma 12, repeating the same proof for each of the triples (ξ(τ ′), v, p′).

Lemma 15. Assume that Γ ` ϕ : {C}p. If enfpτ,b(ϕ, σ · 〈(τ,D)〉 , X ′, v) =
(S,C,X) and (ξ, v, p′) ∈ X, then for all τ ′ ∈ {τ, τ +1} such that τ ′ = τ +1 =⇒ b,
we have Γ ` ξ(τ ′) : {C}p′ .

Proof. By inspection of Algorithm 2, we see that whenever enfp2(ϕ2, ...) is called
recursively in enfp1(ϕ1, ...) and Γ ` ϕ1 : {C}p1 , then Γ ` ϕ2 : {C}p2 . Now assume
that some enfp

′
(ϕ′, ...) with Γ ` ϕ′ : {C}p′ adds a new triple to X. There are

four cases:
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– If ϕ′ = #I ϕ1, then ξ(τ ′) = (¬TP) UI−(τ ′−τ) (TP ∧ ϕ1) if τ ′ − τ ≤ sup I, and
ξ(τ ′) = ⊥ otherwise. There are two cases:
• If p = −, then Γ ` ϕ′ : S implies Γ ` ϕ1 : S. We can use US, ∧SR, and
Γ ` ϕ1 : S to obtain Γ ` ξ(τ ′) : S if τ ′ − τ ≤ sup I. If τ ′ − τ > sup I,
then we obtain the same conclusion using rule ⊥S.

• If p = +, then Γ ` ϕ′ : C implies Γ ` ϕ1 : C and I = [0, b) with b > 0
(rule #C). Since τ ′ ∈ {τ, τ + 1}, we have τ ′ − τ ≤ 1 ≤ sup I. Hence
ξ(τ ′) = (¬TP) UI−(τ ′−τ) (TP ∧ ϕ1), and we obtain Γ ` ϕ′ : C by using
UCR, ∧C, and TP ∈ C.

– If ϕ′ = ϕ1UI ϕ2, then ξ(τ ′) = (TP→ ϕ1)UI−(τ ′−τ) (TP∧ϕ1) if τ ′− τ ≤ sup I,
and ξ(τ ′) = ⊥ otherwise. There are again two cases:
• If p = −, then Γ ` ϕ′ : S implies Γ ` ϕ2 : S (rule US). We can use
US, ∧SR, and Γ ` ϕ2 : S to obtain ξ(τ ′) ` ϕ′ : S if τ ′ − τ ≤ sup I. If
τ ′ − τ > sup I, then we obtain the same conclusion using rule ⊥S.

• If p = +, we observe that the future obligation can only be in X if
I 6= [0, 0] or b is false. This implies that sup I ≥ 1 or τ ′−τ = 0, and hence
τ ′ − τ ≤ sup I and ξ(τ ′) = (TP→ ϕ1) UI−(τ ′−τ) (TP ∧ ϕ2). If Γ ` ϕ′ : C
is obtained using UCLR, then we have Γ ` ϕ1 : C and Γ ` ϕ2 : C. We
prove that Γ ` ξ(τ ′) : C using TP ∈ C and rules UCLR, →CR (defined
Appendix A), and ∧C. If Γ ` ϕ′ : C is obtained using UCR, then Γ ` ϕ2 : C
and I = [0, b] for some b ∈ N. We prove that Γ ` ξ(τ ′) : C using TP ∈ C,
the fact that I − [0, b] = [0, b− (τ ′ − τ)], and rules UCR and ∧C.

Lemma 16. Let Γ , I, ϕ1, ϕ2, and p such that Γ ` ϕ1UI ϕ2 : {C}p. If sup I ≥ 1,
then Γ ` ϕ1 UI−1 ϕ2 : {C}p.

Proof. If sup I ≥ 1, then I − 1 is a non-empty interval. The proof is by case
distinction on the rule used to derive Γ ` ϕ1 UI ϕ2.

– US, p = −: We have Γ ` ϕ2 : S, hence by applying US again we get
Γ ` ϕ1 UI−1 ϕ2.

– UCR, p = +: We have Γ ` ϕ2 : C, and I = [0, b] for some b ∈ N. Hence
I − 1 = [0, b− 1]. By applying UCR again we get Γ ` ϕ1 UI−1 ϕ2.

– UCR, p = +: We have Γ ` ϕ1 : C, Γ ` ϕ2 : C, and sup I 6=∞. By applying
UCLR again we get Γ ` ϕ1 UI−1 ϕ2.

Lemma 17. Assume that Γ ` ϕ : C. Let X be the state of the enforcer at the
beginning of the kth iteration of run, σ be the trace produced in the first k − 1
iterations, and ts the timestamp in the kth iteration. Then ∀(ξ, v, p) ∈ X.Γ `
ξ(ts) : {C}p.

Proof. By induction on k. If k = 0, then X = {(λ_. ϕ, ∅,+)} and the result if
trivial. Let k > 0 such that the property holds for k − 1. Let X ′ and ts′ be the
state of the enforcer and the timestamp at the beginning of the k − 1st iteration,
respectively. There are two cases:
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– If the k−1st iteration returned NoCom, then X ′ = X, ts′ = ts+1, and b was
true in iteration k− 1. Moreover, there exists C and S such that (C, S,X) =
enf+ts,b(Φ, σ, ∅, ∅) and TP /∈ C. By systematic inspection of Algorithm 2, we
see that none of the ξ in X ′ is such that ξ(ts′) = ϕ1 UI−(ts′−τ) ϕ2 for
some ϕ1, ϕ2, and τ such that I − (ts′ − τ) = [0, 0] (otherwise, TP would
have been caused at k − 1 and the returned command would not have been
NoCom). Hence, all future obligations in X have a first component of the
form ξ = λτ ′. ϕ1 UI−(τ ′−τ) ϕ2 where sup I ≥ ts′ − τ + 1. By Lemma 16 and
ts′ = ts+ 1, this guarantees that ∀(ξ, v, p) ∈ X.Γ ` ξ(ts′) : {C}p.

– Else, there exists C and S such that (C, S,X) = enf+ts,b(Φ, σ, ∅, ∅), where Φ =∧
(ξ,v,+)∈X′ ξ(ts

′)[v]∧
∧

(ξ,v,−)∈X′ ¬ξ(ts′)[v] or Φ = TP∧
∧

(ξ,v,+)∈X′ ξ(ts
′)[v]∧∧

(ξ,v,−)∈X′ ¬ξ(ts′)[v]. Using the IH and rules ∧C and ¬C, we get Γ ` Φ : C.
Hence, by Lemma 15, enf+ts,b(Φ, σ, ∅, ∅) yields ∀(ξ, v, p) ∈ X.Γ ` ξ(ts) : {C}p.

Lemma 18. Let k ≥ 1. Let Φ be the formula computed by enf at the beginning
of the kth iteration of run, ts and ts′ the timestamps in the kth and k + 1st
iterations respectively, σ the trace produced in the first k − 1 iterations, and X
the state of the formula at the end of the kth iteration. We have

∀D,σ′.
(
∀(ξ, v, p) ∈ X. v, |σ| �

σ·(ts,D)·σ′TP p[ξ(ts
′)]p

)
=⇒ v, |σ| − 1 �

σ·(ts,D)·σ′TP [Φ]+.

Proof. Let X ′ be the state of the enforcer at the beginning of the kth iteration
of run. By Lemma 17, we have ∀(ξ, v, p) ∈ X ′. Γ ` ξ(ts) : {C}p, and hence, as
above, Γ ` Φ : C. The definition of run ensures that b is set to true whenever
ts′ > ts. Moreover, as above, Γ ` Φ : C. Using Lemma 10, we conclude that
v, |σ| − 1 �

σ·(ts,D)·σ′TP [Φ]+ holds.

Lemma 19. Let k ≥ 1. Assume that Γ ` ϕ : C. Let X be the state of the
enforcer at the beginning of the kth iteration of run, σ be the trace produced in the
first k − 1 iterations, and ts be the timestamp in the kth iteration of run. Then
there exists σ′ such that ∀(ξ, v, p) ∈ X. v, |σ| �σ·σ′ p[ξ(ts)]p.

Proof. Straightforward from Lemmata 14 and 17.

Lemma 20. Let X be the state of the enforcer at the beginning of the kth
iteration of run. For any (ξ, v, p) ∈ X, σ ∈ Tω, i, ts ∈ N, and ϕ any subformula
of ξ(ts′), the truth value of v, i �σ ϕ does not depend on the presence of any
TP events occurring at time-points 0, . . . , i − 1 in σ. As a corrolary, we have
v, i �

σ|..i−2·σ|i−1..
TP ϕ⇐⇒ v, i �

σ|..i−1·σ|i..
TP ϕ.

Proof. In every iteration, TP predicates are only inserted in foτ,#,I,ϕ1
and

foτ,U,I,ϕ1,ϕ2 , where they appear above all past operators. In every call to µ, the
formula Φ is process top-down, generating future obligations only when reaching
a future operator. Hence, one can show by induction that all TP predicates in Φ
occur above all past operators. This implies the desired property.



Proactive Real-Time First-Order Enforcement 45

Lemma 21. Let k ≥ 1. Let σ the trace produced in the first k − 1 iterations (1-
indexed) of run, ts and ts′ the timestamps in the k − 1st iteration (or 0 if k = 0)
and the kth iteration, respectively, and X the state of the formula at the beginning
of the kth iteration. We have

∀D,σ′.
(
∀(ξ, v, p) ∈ X. v, |σ| �

σ·(ts′,D)·σ′TP p[ξ(ts
′)]p

)
=⇒ σ · (ts′, D) · σ′ ∈ L([ϕ]+).

Proof. We prove

∀k ∈ N. P (k) ≡

∀D,σ′.
(
∀(ξ, v, p) ∈ Xk. v, |σk| �σk·(tsk,D)·σ′TP p[ξ(tsk)]p

)
=⇒ σk · (tsk, D) · σ′ ∈ L([ϕ]+)

where Xk, σk, and tsk denote the state of the enforcer, the already generated
trace prefix, and the timestamp at the beginning of the kth iteration. The proof
is by induction on k.

If k = 1, then σ1 = ε, ts0 = τ0, and X1 = {(λ_. ϕ, v,+)}. Let D, and σ′. The
LHS of the implication to be proven is v, 0 �

(ts0,D)·σ′TP [ϕ]+. As ϕ does not contain
any TP event, then v, 0 �(ts0,D)·σ′ [ϕ]+. This is exactly (ts0, D) · σ′ ∈ L([ϕ]+).

Let k > 1 such that P (k − 1) holds. Let D, and σ′ such that

∀(ξ, v, p) ∈ Xk. v, |σk| �σk·(tsk,D)·σ′TP p[ξ(tsk)]p (∗)

holds. There are two cases:

– If enf did not return NoCom in the k− 1st iteration, then there exists D̂ such
that σk = σk−1 · (tsk−1, D̂). By Lemma 18, we get

∀D′, D′′, σ′′.(
∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 �

σk−1·(tsk−1,D̂)·(tsk,D′′)·σ′′
TP p[ξ(tsk)]p

)
=⇒ v, |σk−1| �

σk−1·(tsk−1,D̂)·(tsk,D′′)·σ′′
TP [Φk−1]+

where Φk−1 is the formula Φ computed at the beginning of the k−1st iteration.
Setting D′′ := D and σ′′ := σ′, we obtain(

∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 �
σk−1·(tsk−1,D̂)·(tsk,D)·σ′

TP p[ξ(tsk)]p

)
=⇒ v, |σk−1| �

σk−1·(tsk−1,D̂)·(tsk,D)·σ′
TP [Φk−1]+.

By (∗), equation σk = σk−1 · (tsk−1, D̂ \ S ∪ C), and Lemma 20, we obtain

∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 �
σk−1·(tsk−1,D̂)·(tsk,D)·σ′

TP p[ξ(tsk)]p.
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Moreover,

v, |σk−1| �
σk−1·(tsk−1,D̂)·(tsk,D)·σ′

TP [Φk−1]+

⇐⇒ ∀(ξ, v, p) ∈ Xk−1. v, |σk−1| �
σk−1·(tsk−1,D̂)·(tsk,D)·σ′

TP p[ξ(tsk−1)]p.

given the construction of Φ using ∧C, ¬C, and substitution. From P (k − 1)
and the last two equations, we conclude that

σk · (tsk, D) · σ′ = σk−1 · (tsk−1, D̂) · (tsk, D) · σ′ ∈ L([ϕ]+).

– If enf returned NoCom in the k−1st iteration, then σk = σk−1. By Lemma 18,
we get

∀D′, D′′, σ′′.(
∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 �

σk−1·(tsk,D′′)·σ′′
TP p[ξ(tsk)]p

)
=⇒ v, |σk−1| �σk−1·(tsk,D′′)·σ′′

TP [Φk−1]+

where Φk−1 is the formula Φ computed at the beginning of the k−1st iteration.
Setting D′′ := D, and σ′′ := σ′, we obtain(

∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 �
σk−1·(tsk,D)·σ′TP p[ξ(tsk)]p

)
=⇒ v, |σk−1| �σk−1·(tsk,D)·σ′TP [Φk−1]+.

Moreover,

v, |σk−1| �σk−1·(tsk,D)·σ′TP [Φk−1]+

⇐⇒ ∀(ξ, v, p) ∈ Xk−1. v, |σk−1| �σk−1·(tsk,D)·σ′TP p[ξ(tsk−1)]p.

given the construction of Φ using ∧C, ¬C, and substitution. From P (k − 1)
and the last two equations, we conclude that

σk · (tsk, D) · σ′ = σk−1 · (tsk, D) · σ′ ∈ L([ϕ]+).

Lemma 22. Assume that ϕ ∈ EMFOTL. Let σ ∈ Tf be a prefix of Eϕ(σ). There
exists σ′ such that σ · σ′ ∈ L(ϕ).

Proof. If σ = ε, Lemma 13 provides the desired property.
If |σ| = k > 0, then by Lemmata 18 and 21, it is sufficient to find some

ts′ ≥ ts, D, and σ′ such that ∀(ξ, v, p) ∈ X. v, |σ| �ϕ
σ·(ts′,D)·σ′TP

p[ξ(ts′)]p, where
X is the state of the enforcer at the end of the iteration producing the last time-
point in σ. This is exactly what Lemma 19 guarantees, hence the conclusion.

We finally conclude:

Theorem 1. If ϕ ∈ EMFOTL, the enforcer Eϕ is sound with respect to L([ϕ]+) ⊆
L(ϕ). As a consequence, ϕ is enforceable.

Proof. By Lemmata 8 and 22.
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B.5 Transparency (Section 5.4)

Lemma 5. If a property admits a transparent enforcer, it is a safety formula.

Proof. Let P be a property and E be a transparent enforcer for ϕ. Let σ ∈ Tω \P .
Since E is an enforcer for ϕ, then E(σ) ∈ P and hence E(σ) 6= σ. Set i ∈ N
such that E(σ)|i 6= σ|i. Observe that since enforcers can neither suppress time-
points nor modify the past, the value of E(σ)|i was computed using information
from σ|..i only. Therefore, for any σ′ ∈ Tω, we have E(σ|i · σ′)|i = E(σ)|i. Hence,
E(σ|i · σ′)|i 6= (σ|i · σ′)|i and finally E(σ|i · σ′) 6= σ|i · σ′. By the transparency of
E , we conclude that σ|i · σ′ /∈ P . Hence P is a safety property.

Theorem 2. If ϕ∈EMFOTL, the enforcer Eϕ is transparent w.r.t. L([ϕ]+).

Proof. Fix σ ∈ L([ϕ]+]). We prove by induction on k that at every iteration k
(1) the goal Φk computed at the begin of iteration k satisfies ∅, |σk| �σTP [Φk]+,
where σk is the trace produced in the first k − 1 iterations and (2) the trace is
not modified by the enforcer (no causation, suppression, or insertion of time-
points) in the kth iteration. For k = 0, Φk = TP ∧ ϕ and (1) is trivial by our
choice of σ. Given (1), a straightforward induction on the structure of ϕ shows
that no events are caused or suppressed and that all generated future obligations,
evaluated with the second timestamp in σ, are satisfied on σ at |σk| + 1 = 1.
This proves (2). For k > 0, (1) is obtained through the same argument about the
generated future obligations at k − 1, observing that when all future obligations
generated in iteration k − 1 are satisfied at time-point |σk|, then Φk is satisfied
at time-point |σk|, too. Using (1), (2) is proved as in the previous case.

C Transparently enforceable subset of EMFOTL

Theorem 2 guarantees that for any ϕ ∈ EMFOTL, the enforcer Eϕ transparently
enforces [ϕ]+ and hence, any ϕ ∈ EMFOTL such that [ϕ]+ = ϕ is transparently
enforceable. In this section, we describe TEMFOTL, a syntactically defined
fragment of EMFOTL satisfying this condition and transparently enforced by
our algorithm. WhyEnf’s type-checker also checks membership in TEMFOTL,
issuing a warning when transparent enforcement cannot be guaranteed.

To define TEMFOTL, we use the notion of strictly relative-past formulae
introduced by Hublet et al. [39]. Strictly relative-past formulae constitute a
syntactically defined subset of MFOTL. The truth value of such formulae at a
given point in time only depends on events that happened before that time, i.e.,
all strictly relative-past formulae are future-free:

Definition 7 (adapted from [39]). An MFOTL formulae is future-free iff for
all trace prefix σ ∈ Tf , valuation v, and i = |σ| − 1, we have ∀σ1, σ2. v, i �σ·σ1

ϕ⇐⇒ ∀σ1, σ2. v, i �σ·σ2
ϕ.

The set of strictly relative-past formulae contains all past-only formulae, but
also some formulae with future operators that can only be evaluated on past
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time-points. For example, the formula �[10,20] ♦[0,5] use(c, d, u) is strictly relative-
past, although it contains a future operator. In the following, SRP denotes the set
of strictly relative-past formulae. The reader is referred to the extended report
provided by Hublet et al. [39] for details.

TEMFOTL is defined as the fragment of EMFOTL containing all formulae
that are typable under the following stricter typing rules (the typing rules
from Figure 3 not listed below being unchanged):

Γ ` ϕ : S ψ ∈ SRP

Γ ` ϕ ∧ ψ : S ∧SL
Γ ` ψ : S ϕ ∈ SRP

Γ ` ϕ ∧ ψ : S ∧SR

0 ∈ I Γ ` ψ : C ϕ,ψ ∈ SRP

Γ ` ϕ SI ψ : C SC
0 /∈ I Γ ` ϕ : S ϕ,ψ ∈ SRP

Γ ` ϕ SI ψ : S SSL

0 ∈ I Γ ` ϕ,ψ : S ϕ,ψ ∈ SRP

Γ ` ϕ SI ψ : S SSLR
b 6=∞ Γ ` ψ : C ϕ ∈ SRP

Γ ` ϕ U[0,b] ψ : C UCR

Γ ` ψ : S ϕ ∈ SRP

Γ ` ϕ UI ψ : S US

Fig. 13. Modified typing rules for TEMFOTL

With the future-free property of strictly relative-past formulae, we can show that

Lemma 23. For all ϕ ∈ TEMFOTL and p ∈ {+,−}, we have [ϕ]p ≡ ϕ.

Proof. By straightforward induction on ϕ, using the definition of [•]p and the
future-freeness assumption.

D Additional experimental results

Fig. 14. WhyMon’s latency and event rate for the formulae in Figure 8, except ϕlim.
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Fig. 15. EnfPoly’s latency and event rate for the formulae ϕlaw and ϕcon of Figure 8.

Fig. 16. WhyEnf’s latency when enforcing ϕcon, ϕinf , and ϕsha over the log [24].
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