
Proactive Real-Time First-Order Enforcement

François Hublet
francois.hublet@inf.ethz.ch

Leonardo Lima
leonardo@di.ku.dk

David Basin
basin@inf.ethz.ch

Srđan Krstić
srdan.krstic@inf.ethz.ch

Dmitriy Traytel
traytel@di.ku.dk

International Conference on Computer-Aided Verification — Montréal, July 26, 2024

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩

Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑

Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command

⟨C, S⟩
Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Runtime Enforcement

System

Trace

{event1, event2} {event2}

1 events A ⊆ E

Enforcer


Policy 𝜑
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command ⟨C, S⟩
Causable C ⊆ C
Suppress S ⊆ S ∩A

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

First-Order Runtime Enforcement

System

Trace

{event1(2) , event2(0, 0, 0) } {event2(1, 3, 1) }

1 events A ⊆ E ×D∗

Enforcer


Policy 𝜑
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command ⟨C, S⟩
Causable C ⊆ C ×D∗

Suppress S ⊆ (S ∩A) ×D∗

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Real-Time First-Order Runtime Enforcement

System

Trace
𝜏1 = 10 𝜏2 = 50

{event1(2) , event2(0, 0, 0) } {event2(1, 3, 1) }

1 events A ⊆ E ×D∗

Enforcer


Policy 𝜑
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command ⟨C, S⟩
Causable C ⊆ C ×D∗

Suppress S ⊆ (S ∩A) ×D∗

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Proactive Real-Time First-Order Runtime Enforcement

System

Trace
𝜏1 = 10 𝜏2 = 50

{event1(2) , event2(0, 0, 0) } {event2(1, 3, 1) }

1 events A ⊆ E ×D∗

Enforcer


Policy 𝜑
Set of causable events C ⊆ E
Set of suppressable events S ⊆ E

2

3 reactive command ⟨C, S⟩
Causable C ⊆ C ×D∗

Suppress S ⊆ (S ∩A) ×D∗

2 proactive command ⟨C⟩

1 tick

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 1 / 16

Motivating example

The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay.

— General Data Protection Regulation, Article 17

To enforce this, we need to set a bound for ‘undue delay’ and:
▶ Distinguish between different users’ requests→ First-Order
▶ Capture real-time delays→ Real-Time
▶ Erase data when an ‘undue delay’ is about to elapse→ Proactive

Similarly for other data protection requirements, kernels, firewalls...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 2 / 16

Motivating example

The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay.

— General Data Protection Regulation, Article 17

To enforce this, we need to set a bound for ‘undue delay’ and:

▶ Distinguish between different users’ requests→ First-Order
▶ Capture real-time delays→ Real-Time
▶ Erase data when an ‘undue delay’ is about to elapse→ Proactive

Similarly for other data protection requirements, kernels, firewalls...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 2 / 16

Motivating example

The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay.

— General Data Protection Regulation, Article 17

To enforce this, we need to set a bound for ‘undue delay’ and:
▶ Distinguish between different users’ requests→ First-Order

▶ Capture real-time delays→ Real-Time
▶ Erase data when an ‘undue delay’ is about to elapse→ Proactive

Similarly for other data protection requirements, kernels, firewalls...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 2 / 16

Motivating example

The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay.

— General Data Protection Regulation, Article 17

To enforce this, we need to set a bound for ‘undue delay’ and:
▶ Distinguish between different users’ requests→ First-Order
▶ Capture real-time delays→ Real-Time

▶ Erase data when an ‘undue delay’ is about to elapse→ Proactive

Similarly for other data protection requirements, kernels, firewalls...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 2 / 16

Motivating example

The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay.

— General Data Protection Regulation, Article 17

To enforce this, we need to set a bound for ‘undue delay’ and:
▶ Distinguish between different users’ requests→ First-Order
▶ Capture real-time delays→ Real-Time
▶ Erase data when an ‘undue delay’ is about to elapse→ Proactive

Similarly for other data protection requirements, kernels, firewalls...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 2 / 16

Motivating example

The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay.

— General Data Protection Regulation, Article 17

To enforce this, we need to set a bound for ‘undue delay’ and:
▶ Distinguish between different users’ requests→ First-Order
▶ Capture real-time delays→ Real-Time
▶ Erase data when an ‘undue delay’ is about to elapse→ Proactive

Similarly for other data protection requirements, kernels, firewalls...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 2 / 16

Related work

▶ Runtime enforcement: ‘Enforceable security policies’ [Schneider, 2000]
+ Enforces policies by blocking the system, automata as policies

▶ Later extensions:
+ Causation vs. suppression [Bauer et al., 2002; Ligatti et al., 2005]
+ Suppressable vs. only-observable events [Basin et al., 2013]
+ Proactive enforcement [Basin et al., 2016; 2024]

▶ Few tools for enforcement of first-order temporal logic
▶ BeepBeep [Hallé and Villemaire, 2009]: (future) LTL-FO, suppression only
▶ ENFPOLY [Hublet et al., 2022]: Restricted fragment, mostly past-only
▶ [Aceto et al., 2018; 2021; 2023]: HML-FO, suppression only

▶ Monitoring of first-order temporal logic: MONPOLY, Verimon, DejaVu, WHYMON...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 3 / 16

https://doi.org/10.1145/353323.353382

Related work

▶ Runtime enforcement: ‘Enforceable security policies’ [Schneider, 2000]
+ Enforces policies by blocking the system, automata as policies

▶ Later extensions:
+ Causation vs. suppression [Bauer et al., 2002; Ligatti et al., 2005]

+ Suppressable vs. only-observable events [Basin et al., 2013]
+ Proactive enforcement [Basin et al., 2016; 2024]

▶ Few tools for enforcement of first-order temporal logic
▶ BeepBeep [Hallé and Villemaire, 2009]: (future) LTL-FO, suppression only
▶ ENFPOLY [Hublet et al., 2022]: Restricted fragment, mostly past-only
▶ [Aceto et al., 2018; 2021; 2023]: HML-FO, suppression only

▶ Monitoring of first-order temporal logic: MONPOLY, Verimon, DejaVu, WHYMON...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 3 / 16

https://doi.org/10.1145/353323.353382

Related work

▶ Runtime enforcement: ‘Enforceable security policies’ [Schneider, 2000]
+ Enforces policies by blocking the system, automata as policies

▶ Later extensions:
+ Causation vs. suppression [Bauer et al., 2002; Ligatti et al., 2005]
+ Suppressable vs. only-observable events [Basin et al., 2013]

+ Proactive enforcement [Basin et al., 2016; 2024]
▶ Few tools for enforcement of first-order temporal logic
▶ BeepBeep [Hallé and Villemaire, 2009]: (future) LTL-FO, suppression only
▶ ENFPOLY [Hublet et al., 2022]: Restricted fragment, mostly past-only
▶ [Aceto et al., 2018; 2021; 2023]: HML-FO, suppression only

▶ Monitoring of first-order temporal logic: MONPOLY, Verimon, DejaVu, WHYMON...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 3 / 16

https://doi.org/10.1145/353323.353382

Related work

▶ Runtime enforcement: ‘Enforceable security policies’ [Schneider, 2000]
+ Enforces policies by blocking the system, automata as policies

▶ Later extensions:
+ Causation vs. suppression [Bauer et al., 2002; Ligatti et al., 2005]
+ Suppressable vs. only-observable events [Basin et al., 2013]
+ Proactive enforcement [Basin et al., 2016; 2024]

▶ Few tools for enforcement of first-order temporal logic
▶ BeepBeep [Hallé and Villemaire, 2009]: (future) LTL-FO, suppression only
▶ ENFPOLY [Hublet et al., 2022]: Restricted fragment, mostly past-only
▶ [Aceto et al., 2018; 2021; 2023]: HML-FO, suppression only

▶ Monitoring of first-order temporal logic: MONPOLY, Verimon, DejaVu, WHYMON...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 3 / 16

https://doi.org/10.1145/353323.353382

Related work

▶ Runtime enforcement: ‘Enforceable security policies’ [Schneider, 2000]
+ Enforces policies by blocking the system, automata as policies

▶ Later extensions:
+ Causation vs. suppression [Bauer et al., 2002; Ligatti et al., 2005]
+ Suppressable vs. only-observable events [Basin et al., 2013]
+ Proactive enforcement [Basin et al., 2016; 2024]

▶ Few tools for enforcement of first-order temporal logic
▶ BeepBeep [Hallé and Villemaire, 2009]: (future) LTL-FO, suppression only
▶ ENFPOLY [Hublet et al., 2022]: Restricted fragment, mostly past-only
▶ [Aceto et al., 2018; 2021; 2023]: HML-FO, suppression only

▶ Monitoring of first-order temporal logic: MONPOLY, Verimon, DejaVu, WHYMON...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 3 / 16

https://doi.org/10.1145/353323.353382

Related work

▶ Runtime enforcement: ‘Enforceable security policies’ [Schneider, 2000]
+ Enforces policies by blocking the system, automata as policies

▶ Later extensions:
+ Causation vs. suppression [Bauer et al., 2002; Ligatti et al., 2005]
+ Suppressable vs. only-observable events [Basin et al., 2013]
+ Proactive enforcement [Basin et al., 2016; 2024]

▶ Few tools for enforcement of first-order temporal logic
▶ BeepBeep [Hallé and Villemaire, 2009]: (future) LTL-FO, suppression only
▶ ENFPOLY [Hublet et al., 2022]: Restricted fragment, mostly past-only
▶ [Aceto et al., 2018; 2021; 2023]: HML-FO, suppression only

▶ Monitoring of first-order temporal logic: MONPOLY, Verimon, DejaVu, WHYMON...

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 3 / 16

https://doi.org/10.1145/353323.353382

Contributions

First algorithm & tool for Proactive Real-Time First-Order Enforcement

Policy language: Metric First-Order Temporal Logic (MFOTL)

1. New systemmodel for real-time proactive enforcement of first-order policies
2. EMFOTL, an expressive enforceable fragment of MFOTL
3. Enforcement algorithm for EMFOTL
4. WHYENF enforcement tool

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 4 / 16

Metric First-Order Temporal Logic (MFOTL)

Let x ∈ V be a variable, c ∈ C be a constant, e ∈ E be an event and I ∈ N × N be an interval,
▶ Syntax

t ::= x | c
𝜑 ::= e(t1, . . . , tn) | ⊤ | ⊥ | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 |

𝜑 → 𝜑 | ∃x. 𝜑 | ∀x. 𝜑 | I𝜑 | #I𝜑 | ♦I𝜑 | ♢I𝜑 |
■I𝜑 | □I𝜑 | 𝜑 SI 𝜑 | 𝜑 UI 𝜑

▶ Semantics (for a fixed trace ⟨(𝜏0,D0), (𝜏1,D1), . . .⟩ and valuation v : V ↦→ D)

v, i ⊨ ♢[a,b]𝜑 ⇐⇒ v, j ⊨ 𝜑 for some j ≥ i with 𝜏j − 𝜏i ∈ [a, b]

𝜑

𝜏i 𝜏j

𝜏i + a

[]
𝜏i + b

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 5 / 16

Metric First-Order Temporal Logic (MFOTL)

Let x ∈ V be a variable, c ∈ C be a constant, e ∈ E be an event and I ∈ N × N be an interval,
▶ Syntax

t ::= x | c
𝜑 ::= e(t1, . . . , tn) | ⊤ | ⊥ | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 |

𝜑 → 𝜑 | ∃x. 𝜑 | ∀x. 𝜑 | I𝜑 | #I𝜑 | ♦I𝜑 | ♢I𝜑 |
■I𝜑 | □I𝜑 | 𝜑 SI 𝜑 | 𝜑 UI 𝜑

▶ Semantics (for a fixed trace ⟨(𝜏0,D0), (𝜏1,D1), . . .⟩ and valuation v : V ↦→ D)

v, i ⊨ ♢[a,b]𝜑 ⇐⇒ v, j ⊨ 𝜑 for some j ≥ i with 𝜏j − 𝜏i ∈ [a, b]

𝜑

𝜏i 𝜏j

𝜏i + a

[]
𝜏i + b

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 5 / 16

MFOTL: Example

The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay.

— General Data Protection Regulation, Article 17

▶ Policy (informal, ‘undue delay’ ∼ > 30 days)

WHENEVER: user uuu requests the deletion of data ddd

ENSURE: ddd is deleted within 30 days

▶ Policy (MFOTL)

□
(
∀d, u. deletion_request (u, d) → ♢[0,30]delete (d)

)

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 6 / 16

MFOTL: Example

The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay.

— General Data Protection Regulation, Article 17

▶ Policy (informal, ‘undue delay’ ∼ > 30 days)

WHENEVER: user uuu requests the deletion of data ddd

ENSURE: ddd is deleted within 30 days

▶ Policy (MFOTL)

□
(
∀d, u. deletion_request (u, d) → ♢[0,30]delete (d)

)

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 6 / 16

MFOTL: Example

The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay.

— General Data Protection Regulation, Article 17

▶ Policy (informal, ‘undue delay’ ∼ > 30 days)

WHENEVER: user uuu requests the deletion of data ddd

ENSURE: ddd is deleted within 30 days

▶ Policy (MFOTL)

□
(
∀d, u. deletion_request (u, d) → ♢[0,30]delete (d)

)
Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 6 / 16

EMFOTL: an enforceable MFOTL fragment

▶ Restriction: require that every event kind is only caused or only suppressed [Hublet et al., 2022]
+ Avoids degenerate cases such as e ∧ ¬e with e both causable and suppressable

▶ 𝜙 ∈ EMFOTL iff there exists Γ such that Γ ⊢ 𝜙 : C
+ The typing context Γ is a mapping: E → {C, S}

▶ (Selected) rules

Γ ⊢ 𝜙 : S
Γ ⊢ 𝜙 → 𝜓 : C →CL

Γ ⊢ 𝜓 : C
Γ ⊢ 𝜙 → 𝜓 : C →CR

Γ ⊢ 𝜙 : C sup I < ∞
Γ ⊢ ♢I𝜙 : C

♢C
⊢ 𝜙 : PG(x)− Γ ⊢ 𝜙 : C

Γ ⊢ ∀x. 𝜙 : C ∀C

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 7 / 16

https://doi.org/10.1007/978-3-031-17146-8_11

EMFOTL: Example typing

If delete is causable, then ∀d, u. deletion_request (u, d) → ♢[0,30]delete (d) ∈ EMFOTL

Ξ1

Ξ2

delete ∈ C

{delete ↦→ C} ⊢ delete(d) : C

EC

30 < ∞

{delete ↦→ C} ⊢ ♢[0,30]delete(d) : C

♢C

{delete ↦→ C} ⊢ deletion_request (u, d) → ♢[0,30]delete (d) : C

→CR

{delete ↦→ C} ⊢ ∀u. deletion_request (u, d) → ♢[0,30]delete (d) : C

∀C

{delete ↦→ C} ⊢ ∀d, u. deletion_request (d) → ♢[0,30]delete (d) : C

∀C

Ξi: “past-guardedness” proofs – see paper for details

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 8 / 16

EMFOTL: Example typing

If delete is causable, then ∀d, u. deletion_request (u, d) → ♢[0,30]delete (d) ∈ EMFOTL

Ξ1

Ξ2

delete ∈ C

{delete ↦→ C} ⊢ delete(d) : C

EC

30 < ∞

{delete ↦→ C} ⊢ ♢[0,30]delete(d) : C

♢C

{delete ↦→ C} ⊢ deletion_request (u, d) → ♢[0,30]delete (d) : C

→CR

{delete ↦→ C} ⊢ ∀u. deletion_request (u, d) → ♢[0,30]delete (d) : C

∀C

{delete ↦→ C} ⊢ ∀d, u. deletion_request (d) → ♢[0,30]delete (d) : C

∀C

Ξi: “past-guardedness” proofs – see paper for details

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 8 / 16

EMFOTL: Example typing

If delete is causable, then ∀d, u. deletion_request (u, d) → ♢[0,30]delete (d) ∈ EMFOTL

Ξ1

Ξ2

delete ∈ C

{delete ↦→ C} ⊢ delete(d) : C

EC

30 < ∞

{delete ↦→ C} ⊢ ♢[0,30]delete(d) : C

♢C

{delete ↦→ C} ⊢ deletion_request (u, d) → ♢[0,30]delete (d) : C

→CR

{delete ↦→ C} ⊢ ∀u. deletion_request (u, d) → ♢[0,30]delete (d) : C

∀C

{delete ↦→ C} ⊢ ∀d, u. deletion_request (d) → ♢[0,30]delete (d) : C ∀C

Ξi: “past-guardedness” proofs – see paper for details

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 8 / 16

EMFOTL: Example typing

If delete is causable, then ∀d, u. deletion_request (u, d) → ♢[0,30]delete (d) ∈ EMFOTL

Ξ1

Ξ2

delete ∈ C

{delete ↦→ C} ⊢ delete(d) : C

EC

30 < ∞

{delete ↦→ C} ⊢ ♢[0,30]delete(d) : C

♢C

{delete ↦→ C} ⊢ deletion_request (u, d) → ♢[0,30]delete (d) : C

→CR

{delete ↦→ C} ⊢ ∀u. deletion_request (u, d) → ♢[0,30]delete (d) : C ∀C

{delete ↦→ C} ⊢ ∀d, u. deletion_request (d) → ♢[0,30]delete (d) : C ∀C

Ξi: “past-guardedness” proofs – see paper for details

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 8 / 16

EMFOTL: Example typing

If delete is causable, then ∀d, u. deletion_request (u, d) → ♢[0,30]delete (d) ∈ EMFOTL

Ξ1

Ξ2

delete ∈ C

{delete ↦→ C} ⊢ delete(d) : C

EC

30 < ∞

{delete ↦→ C} ⊢ ♢[0,30]delete(d) : C

♢C

{delete ↦→ C} ⊢ deletion_request (u, d) → ♢[0,30]delete (d) : C →CR

{delete ↦→ C} ⊢ ∀u. deletion_request (u, d) → ♢[0,30]delete (d) : C ∀C

{delete ↦→ C} ⊢ ∀d, u. deletion_request (d) → ♢[0,30]delete (d) : C ∀C

Ξi: “past-guardedness” proofs – see paper for details

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 8 / 16

EMFOTL: Example typing

If delete is causable, then ∀d, u. deletion_request (u, d) → ♢[0,30]delete (d) ∈ EMFOTL

Ξ1

Ξ2

delete ∈ C

{delete ↦→ C} ⊢ delete(d) : C

EC

30 < ∞
{delete ↦→ C} ⊢ ♢[0,30]delete(d) : C ♢C

{delete ↦→ C} ⊢ deletion_request (u, d) → ♢[0,30]delete (d) : C →CR

{delete ↦→ C} ⊢ ∀u. deletion_request (u, d) → ♢[0,30]delete (d) : C ∀C

{delete ↦→ C} ⊢ ∀d, u. deletion_request (d) → ♢[0,30]delete (d) : C ∀C

Ξi: “past-guardedness” proofs – see paper for details

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 8 / 16

EMFOTL: Example typing

If delete is causable, then ∀d, u. deletion_request (u, d) → ♢[0,30]delete (d) ∈ EMFOTL

Ξ1

Ξ2

delete ∈ C
{delete ↦→ C} ⊢ delete(d) : C EC

30 < ∞
{delete ↦→ C} ⊢ ♢[0,30]delete(d) : C ♢C

{delete ↦→ C} ⊢ deletion_request (u, d) → ♢[0,30]delete (d) : C →CR

{delete ↦→ C} ⊢ ∀u. deletion_request (u, d) → ♢[0,30]delete (d) : C ∀C

{delete ↦→ C} ⊢ ∀d, u. deletion_request (d) → ♢[0,30]delete (d) : C ∀C

Ξi: “past-guardedness” proofs – see paper for details

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 8 / 16

Enforcement algorithm

In every step i with timestamp 𝜏:
▶ The algorithm starts with a goal Φ

+ If i = 0, this goal is just the target policy
▶ By decomposing the goal into simpler goals, it

computes:
+ C ⊆ C × D∗: events to cause
+ S ⊆ S × D∗: events to suppress
+ X′: new set of obligations for the next time-point

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 9 / 16

Enforcement algorithm: Correctness

An enforcer E is sound with respect to a formula 𝜑 iff for any trace 𝜎, we have ⊨E(𝜎) 𝜑.
It is transparent with respect to 𝜑 iff for all 𝜎 with ⊨𝜎 𝜑, then E(𝜎) = 𝜎.

Theorem: Soundness of the invisible yogurt

If 𝜑 ∈ EMFOTL, the enforcer E𝜑 is sound.

Theorem: Transparency

If 𝜑 ∈ TEMFOTL*, the enforcer E𝜑 is transparent.

* see definition in the extended version of our paper

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 10 / 16

Implementation
Available

CAV

Evaluation
Artifact

Functional

CAV

Evaluation
Artifact

WHYENF

Enforcer

WHYMON∗

Monitor

Trace

Signature

Formula

(Valuation, Formula, Time-point, Future Obligations)

True/False

where WHYMON∗ is a modified version of WHYMON [Lima et al., TACAS 2024] which
▶ returns Boolean verdicts instead of explanations
▶ includes a function SAT that checks if a valuation satisfies a formula on a trace prefix given some

future obligations

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 11 / 16

Evaluation

Dataset:

▶ MFOTL formalization of core GDPR provisions [Arfelt et al.., 2019]
▶ Traces produced by a real-world system [Debois et al., 2015] with ∼4,000 time-points
▶ Random synthetic traces with length 100-25600 and time-point sizes 1–256

Research questions:

RQ1. Is EMFOTL expressive enough to formalize real-world policies?
Is manual formula rewriting necessary?

RQ2. At what maximum event rate can WHYENF perform real-time enforcement?
RQ3. Do WHYENF’s performance improve upon the state-of-the-art?

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 12 / 16

https://doi.org/10.1007/978-3-030-29959-0_33
https://doi.org/10.1109/SSCI.2015.196

Evaluation – RQ1 (Expressiveness)

Minimization: □ (∀c, d, u. collect(c, d, u) → ♢use(c, d, u))

Limitation: □ (∀c, d, u. collect(c, d, u) → ♢[0,b]delete(c, d, u))

Lawfulness: □ (∀c, d, u. use(c, d, u) → ♦ (consent(u, c) ∨ legal_grounds(u, d)))

Consent: □ (∀c, d, u. use(c, d, u) → (♦legal_grounds(u, d)) ∨ (¬revoke(u, c) S consent(u, c)))

Information: □ (∀c, d, u. collect(c, d, u) → ((#inform(u)) ∨ (♦inform(u))))

Deletion: □ (∀c, d, u. deletion_request(c, d, u) → ♢[0,30]delete(c, d, u))

Sharing: □ (∀c, d, u, p. deletion_request(c, d, u) ∧ (♦share(p, d)) → ♢[0,30]notify(p, d))

7

3

3

3

3

3

3

inherently not enforceable!

transparently enforceable, no policy rewriting needed!

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 13 / 16

Evaluation – RQ1 (Expressiveness)

Minimization: □ (∀c, d, u. collect(c, d, u) → ♢use(c, d, u))

Limitation: □ (∀c, d, u. collect(c, d, u) → ♢[0,b]delete(c, d, u))

Lawfulness: □ (∀c, d, u. use(c, d, u) → ♦ (consent(u, c) ∨ legal_grounds(u, d)))

Consent: □ (∀c, d, u. use(c, d, u) → (♦legal_grounds(u, d)) ∨ (¬revoke(u, c) S consent(u, c)))

Information: □ (∀c, d, u. collect(c, d, u) → ((#inform(u)) ∨ (♦inform(u))))

Deletion: □ (∀c, d, u. deletion_request(c, d, u) → ♢[0,30]delete(c, d, u))

Sharing: □ (∀c, d, u, p. deletion_request(c, d, u) ∧ (♦share(p, d)) → ♢[0,30]notify(p, d))

7

3

3

3

3

3

3

inherently not enforceable!

transparently enforceable, no policy rewriting needed!

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 13 / 16

Evaluation – RQ1 (Expressiveness)

Minimization: □ (∀c, d, u. collect(c, d, u) → ♢use(c, d, u))

Limitation: □ (∀c, d, u. collect(c, d, u) → ♢[0,b]delete(c, d, u))

Lawfulness: □ (∀c, d, u. use(c, d, u) → ♦ (consent(u, c) ∨ legal_grounds(u, d)))

Consent: □ (∀c, d, u. use(c, d, u) → (♦legal_grounds(u, d)) ∨ (¬revoke(u, c) S consent(u, c)))

Information: □ (∀c, d, u. collect(c, d, u) → ((#inform(u)) ∨ (♦inform(u))))

Deletion: □ (∀c, d, u. deletion_request(c, d, u) → ♢[0,30]delete(c, d, u))

Sharing: □ (∀c, d, u, p. deletion_request(c, d, u) ∧ (♦share(p, d)) → ♢[0,30]notify(p, d))

7

3

3

3

3

3

3

inherently not enforceable!

transparently enforceable, no policy rewriting needed!

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 13 / 16

Evaluation – RQ2+3 (Performance)

Real-time condition: maxℓ (a) ≤ 1/a.

Event rate (avger, s−1) and maximum latency (maxℓ , ms) for the largest real-time acceleration a.

WHYENF WHYMON∗ ENFPOLY
Enforcer Monitor Enforcer

Policy avger maxℓ avger maxℓ avger maxℓ
Limitation 632 14 not supported not supported
Lawfulness 405 15 405 12 6479 1.0
Consent 51 96 101 51 6479 1.0

Information 202 13 405 16 not supported
Deletion 632 19 13 434 not supported
Sharing 202 26 13 289 not supported

Consistent findings on synthetic traces

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 14 / 16

▶ WHYENF2
+ Language extensions: let bindings, complex terms, aggregations
+ Performance optimizations

▶ Using WHYENF as a backend for enforcing legal requirements in software
+ Instrument of web applications
+ Domain-specific language for legal specs

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 15 / 16

Thank you for your attention!

If you are interested in this work, feel free to drop us an e-mail:

François Hublet francois.hublet@inf.ethz.ch
Leonardo Lima leonardo@di.ku.dk

Hublet, Lima, Basin, Krstić, and Traytel — Proactive Real-Time First-Order Enforcement 16 / 16

